「標的認識」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
3行目: 3行目:
[[Image:辞典01.jpg|thumb|200px|'''図1.登上線維の小脳への投射'''<br>延髄の下オリーブ核は軸索を小脳に投射する。軸索は橋の背部で小脳に入り、そこから小脳皮質に投射する。小脳皮質ではいくつかの細胞の中で一つのプルキンエ細胞に特異的なシナプスを形成する。その特徴的な形態により、この軸索は登上線維とよばれるが、この形態はラモニイカハールによってもその著書の中で描写されている。]]  
[[Image:辞典01.jpg|thumb|200px|'''図1.登上線維の小脳への投射'''<br>延髄の下オリーブ核は軸索を小脳に投射する。軸索は橋の背部で小脳に入り、そこから小脳皮質に投射する。小脳皮質ではいくつかの細胞の中で一つのプルキンエ細胞に特異的なシナプスを形成する。その特徴的な形態により、この軸索は登上線維とよばれるが、この形態はラモニイカハールによってもその著書の中で描写されている。]]  
   
   
[[Image:辞典02.jpg|thumb|200px|'''図2.Chemoaffinity theory'''<br>ニワトリの系において網膜の神経節細胞は視蓋にその軸索を投射する。その時に、網膜の鼻側にある細胞は視蓋の後側に、耳側にある細胞は視蓋の前側に軸索を送る。このトポグラフィックな投射は、視蓋に前後軸に沿ってグレディエントを形成してephrhinAが発現し、そのレセプターであるEphAが網膜の神経節細胞において内外軸に沿ってグレディエントを形成して発現していて、その両者の相互作用によってできる。]]
 ターゲット認識については主に神経発生における2つの過程で起こる可能性があるが、ここでは主にシナプス形成におけるターゲット認識を例にその概念を説明し、アクソンガイダンスにおける中間ターゲットの認識については触れない(これについてはアクソンガイダンスの項及び、ガイドポスト細胞の項を参照のこと)。  
 ターゲット認識については主に神経発生における2つの過程で起こる可能性があるが、ここでは主にシナプス形成におけるターゲット認識を例にその概念を説明し、アクソンガイダンスにおける中間ターゲットの認識については触れない(これについてはアクソンガイダンスの項及び、ガイドポスト細胞の項を参照のこと)。  


10行目: 12行目:
== 歴史的な考察 ==
== 歴史的な考察 ==


[[Image:辞典02.jpg|thumb|200px|'''図2.Chemoaffinity theory'''<br>ニワトリの系において網膜の神経節細胞は視蓋にその軸索を投射する。その時に、網膜の鼻側にある細胞は視蓋の後側に、耳側にある細胞は視蓋の前側に軸索を送る。このトポグラフィックな投射は、視蓋に前後軸に沿ってグレディエントを形成してephrhinAが発現し、そのレセプターであるEphAが網膜の神経節細胞において内外軸に沿ってグレディエントを形成して発現していて、その両者の相互作用によってできる。]]
 Santiago Ramon y Cajalが前世紀の初頭にその詳細な組織学的解析から、神経の突起が周りにあるシグナルを選択的に感知しながら目的地へ進んでいるのではないかと推測し、chemotaxisに似た現象が神経系の形成に重要なのではないかと提唱していた。それに対して主に末梢神経の再生の実験結果から1920年代から30年代にはPaul A Weissらによる、神経系の線維の結合は主に物理的な制約で決定され、その結合は決して特異的なものではなくランダムであり、その後にその回路を使用する事によって、その使われた特定の回路が最終的に残るという説が主流を占めていた。その説に対してWeissの学生であったRoger Sperryは40年代から50年代にわたって行った彼の一連のカエルやイモリといった動物の眼を使った神経再生の実験により、神経の回路形成にはやはり選択性が存在し、そのメカニズムについてchemoaffinity theoryを提唱した<ref><pubmed>14077501</pubmed></ref>。このchemoaffinity theoryには2つの概念が含まれており、1つは神経細胞はそれぞれの細胞、線維におそらく化学物質からなる個々を認識するタグがついており、これによってお互いを区別して、その化学親和性で神経細胞はおそらくシングル細胞のレベルで特異的な神経結合を作る事ができるというもので、もう1つは特に視覚系で明らかであるが、その線維投射のパターンが規則正しく、トポグラフィックであることから、少数のモルフォゲンの様な濃度勾配を形成するような分子群がこのchemoaffinityを担う物質として機能するというものである(図2)。Chemoaffinity theoryについては激しい論争があったが、やがて分子レベルでの解析、また数理モデル等に支えられ、神経発生の分野で一般に受け入れられる概念となり、現在のターゲット認識の概念は基本的にこのchemoaffinity theoryの流れを汲んでいる。


 Santiago Ramon y Cajalが前世紀の初頭にその詳細な組織学的解析から、神経の突起が周りにあるシグナルを選択的に感知しながら目的地へ進んでいるのではないかと推測し、chemotaxisに似た現象が神経系の形成に重要なのではないかと提唱していた。それに対して主に末梢神経の再生の実験結果から1920年代から30年代にはPaul A Weissらによる、神経系の線維の結合は主に物理的な制約で決定され、その結合は決して特異的なものではなくランダムであり、その後にその回路を使用する事によって、その使われた特定の回路が最終的に残るという説が主流を占めていた。その説に対してWeissの学生であったRoger Sperryは40年代から50年代にわたって行った彼の一連のカエルやイモリといった動物の眼を使った神経再生の実験により、神経の回路形成にはやはり選択性が存在し、そのメカニズムについてchemoaffinity theoryを提唱した<ref><pubmed>14077501</pubmed></ref>。このchemoaffinity theoryには2つの概念が含まれており、1つは神経細胞はそれぞれの細胞、線維におそらく化学物質からなる個々を認識するタグがついており、これによってお互いを区別して、その化学親和性で神経細胞はおそらくシングル細胞のレベルで特異的な神経結合を作る事ができるというもので、もう1つは特に視覚系で明らかであるが、その線維投射のパターンが規則正しく、トポグラフィックであることから、少数のモルフォゲンの様な濃度勾配を形成するような分子群がこのchemoaffinityを担う物質として機能するというものである(図2)。Chemoaffinity theoryについては激しい論争があったが、やがて分子レベルでの解析、また数理モデル等に支えられ、神経発生の分野で一般に受け入れられる概念となり、現在のターゲット認識の概念は基本的にこのchemoaffinity theoryの流れを汲んでいる。
[[Image:辞典03.jpg|thumb|200px|'''図3.ターゲット認識の特異性'''<br>神経系において皮質構造をなすところXやYがあり、また、核構造をなすZがあるとする。その中のYに投射しX、Zには投射しない軸索は神経系の様々なところから来るとする(A、B、C)。そして、この線維はYの中のある特定の細胞(薄緑色の細胞群)にシナプスを形成し、その場合、Aは樹状突起の遠位側に、Bは樹状突起の近位側に、Cは細胞体にそれぞれシナプスを形成するとする。こういった場合、それぞれの過程で特異的な標的認識が必要となる。]]


== 特にシナプス形成における特異性とそれをサポートする分子 ==
== 特にシナプス形成における特異性とそれをサポートする分子 ==
21行目: 23行目:


== Chemoaffinity revisited ==
== Chemoaffinity revisited ==
[[Image:辞典03.jpg|thumb|200px|'''図3.ターゲット認識の特異性'''<br>神経系において皮質構造をなすところXやYがあり、また、核構造をなすZがあるとする。その中のYに投射しX、Zには投射しない軸索は神経系の様々なところから来るとする(A、B、C)。そして、この線維はYの中のある特定の細胞(薄緑色の細胞群)にシナプスを形成し、その場合、Aは樹状突起の遠位側に、Bは樹状突起の近位側に、Cは細胞体にそれぞれシナプスを形成するとする。こういった場合、それぞれの過程で特異的な標的認識が必要となる。]]


 上記のようなタイトルのレビューが2010年のCellにでた<ref><pubmed>21029858</pubmed></ref>。内容は、Dscamやプロトカドヘリンの様な分子は多様性をもつので、chemoaffinity theoryで特異性を担う分子タグとして機能しているかもしれないという様に考えられていたが、実はこれらの分子は特異的な相互作用を担う分子タグではなく、自己と他者を見分けるためのタグとして使われているのではないかという内容のレビューである。従って、Sperryの仮想した多様な特異性を担う分子は存在しないということを意味する訳ではなく、Dscamやプロトカドヘリンといった分子はその役割を果たしていないのではないかということである。ただし、彼らは鍵と鍵穴のような多様な分子は実際は必要ないのではないかとも述べている。  
 上記のようなタイトルのレビューが2010年のCellにでた<ref><pubmed>21029858</pubmed></ref>。内容は、Dscamやプロトカドヘリンの様な分子は多様性をもつので、chemoaffinity theoryで特異性を担う分子タグとして機能しているかもしれないという様に考えられていたが、実はこれらの分子は特異的な相互作用を担う分子タグではなく、自己と他者を見分けるためのタグとして使われているのではないかという内容のレビューである。従って、Sperryの仮想した多様な特異性を担う分子は存在しないということを意味する訳ではなく、Dscamやプロトカドヘリンといった分子はその役割を果たしていないのではないかということである。ただし、彼らは鍵と鍵穴のような多様な分子は実際は必要ないのではないかとも述べている。  


== ターゲット認識に関与する分子メカニズム ==
== ターゲット認識に関与する分子メカニズム ==
[[Image:辞典04.jpg|thumb|200px|'''図4.Drosophilaの眼における軸索の投射'''<br>ショウジョウバエの眼では8つの細胞からなる神経細胞のユニットが整然と配置されていて、これによって視覚が担われている。その8つの細胞にはR1−8とそれぞれ名前がつけられているが、R1−6はlaminaで中継ニューロンにシナプスを形成するのに対し、R7、R8はmedullaに軸索を投射し、そこでシナプスを形成する。R1−6の中継ニューロンは(L: lamina neuron)やはりmedullaに投射するが、そのシナプスを形成する層がR7,R8のシナプスが形成される層とは異なる。TM, TMY: tangential medulla neurons, DM: distal medulla intrinsic neurons, これらは中継ニューロンでそれぞれ異なる視覚情報を中枢へ伝える。]]


 いずれにしても分子メカニズムとしては、まず、目的の領域に達する機構(様々なアクソンガイダンスのメカニズム)、そして領域内のどこに到着するかを決定する機構(おそらく神経伸長促進因子か抑制性因子とそのレセプターの発現レベルによって形成される)、そして特異的な細胞集団を見つける機構(おそらく細胞接着因子及び抑制因子)、そして細胞内の特異的なコンパートメントを見つける機構(おそらく細胞接着因子及び抑制因子)が必要である(図3)。 この過程で特異性は、それぞれの神経細胞において、標示されているシグナルに対するレセプターの発現の変化、発現されているレセプターのコンビネーションの変化、また、レセプターの下流のシグナル系路の変化によって、それぞれのシグナルへの応答性が変わることによって形成されると考えられる。詳細な分子メカニズムについてはアクソンガイダンスの項を参照のこと。
 いずれにしても分子メカニズムとしては、まず、目的の領域に達する機構(様々なアクソンガイダンスのメカニズム)、そして領域内のどこに到着するかを決定する機構(おそらく神経伸長促進因子か抑制性因子とそのレセプターの発現レベルによって形成される)、そして特異的な細胞集団を見つける機構(おそらく細胞接着因子及び抑制因子)、そして細胞内の特異的なコンパートメントを見つける機構(おそらく細胞接着因子及び抑制因子)が必要である(図3)。 この過程で特異性は、それぞれの神経細胞において、標示されているシグナルに対するレセプターの発現の変化、発現されているレセプターのコンビネーションの変化、また、レセプターの下流のシグナル系路の変化によって、それぞれのシグナルへの応答性が変わることによって形成されると考えられる。詳細な分子メカニズムについてはアクソンガイダンスの項を参照のこと。


== 各論 ==
== 各論 ==
[[Image:辞典04.jpg|thumb|200px|'''図4.Drosophilaの眼における軸索の投射'''<br>ショウジョウバエの眼では8つの細胞からなる神経細胞のユニットが整然と配置されていて、これによって視覚が担われている。その8つの細胞にはR1−8とそれぞれ名前がつけられているが、R1−6はlaminaで中継ニューロンにシナプスを形成するのに対し、R7、R8はmedullaに軸索を投射し、そこでシナプスを形成する。R1−6の中継ニューロンは(L: lamina neuron)やはりmedullaに投射するが、そのシナプスを形成する層がR7,R8のシナプスが形成される層とは異なる。TM, TMY: tangential medulla neurons, DM: distal medulla intrinsic neurons, これらは中継ニューロンでそれぞれ異なる視覚情報を中枢へ伝える。]]


 ここではごく限られた例につき、簡単に述べることにする。詳しくはそれぞれの文献を参照のこと。  
 ここではごく限られた例につき、簡単に述べることにする。詳しくはそれぞれの文献を参照のこと。  
46行目: 46行目:
 またDrosophilaのolfactory systemであるMushroom bodyヘのターゲッティングについても研究が進められている。これにはマウスで明らかにされている様なトポグラフィックなマッピングのメカニズムも関与しているようである<ref><pubmed>20554703</pubmed></ref>。  
 またDrosophilaのolfactory systemであるMushroom bodyヘのターゲッティングについても研究が進められている。これにはマウスで明らかにされている様なトポグラフィックなマッピングのメカニズムも関与しているようである<ref><pubmed>20554703</pubmed></ref>。  


=== 脊椎動物の視覚系、嗅覚系におけるターゲティング===  
=== 脊椎動物の視覚系、嗅覚系におけるターゲティング ===


 Sperryの流れを汲み、視覚系においてターゲット認識がどうなっているかは精力的に研究が進められてきた。網膜内でのトポグラフィックな情報が視蓋/上丘、外側膝状体、そして視覚野において保存される必要があり、それを支える分子群が同定されている。代表的なものはEph-Ephrinシステムである<ref><pubmed>20880989</pubmed></ref>。また、坂野らによってマウスの嗅覚系におけるトポグラフィックな情報を担ったsemaphorin-neuropilinシステムによるターゲット認識の機構が明らかにされている<ref><pubmed>21469960</pubmed></ref>。これらについてはトポグラフィックマッピングの項を参照されたい。  
 Sperryの流れを汲み、視覚系においてターゲット認識がどうなっているかは精力的に研究が進められてきた。網膜内でのトポグラフィックな情報が視蓋/上丘、外側膝状体、そして視覚野において保存される必要があり、それを支える分子群が同定されている。代表的なものはEph-Ephrinシステムである<ref><pubmed>20880989</pubmed></ref>。また、坂野らによってマウスの嗅覚系におけるトポグラフィックな情報を担ったsemaphorin-neuropilinシステムによるターゲット認識の機構が明らかにされている<ref><pubmed>21469960</pubmed></ref>。これらについてはトポグラフィックマッピングの項を参照されたい。