「相互相関解析」の版間の差分

編集の要約なし
16行目: 16行目:
[[Image:CCG_Fig2.png|thumb|350px|'''図2 相互共分散関数の例'''<br>二つの仮想的な細胞のスパイク活動から計算した相互共分散関数(青線)。相互相関関数(黒線)には、細胞活動間の共分散(相関)に由来する成分と、平均発火率の変化に由来する成分が含まれる。細胞活動が独立である場合に期待される相互相関関数(赤線)を差し引くことで、共分散に由来する成分を抽出することができる。この例では、二つの細胞の活動の間に正の相関がある。]]  
[[Image:CCG_Fig2.png|thumb|350px|'''図2 相互共分散関数の例'''<br>二つの仮想的な細胞のスパイク活動から計算した相互共分散関数(青線)。相互相関関数(黒線)には、細胞活動間の共分散(相関)に由来する成分と、平均発火率の変化に由来する成分が含まれる。細胞活動が独立である場合に期待される相互相関関数(赤線)を差し引くことで、共分散に由来する成分を抽出することができる。この例では、二つの細胞の活動の間に正の相関がある。]]  


 神経活動はしばしば[[wikipedia:ja:確率過程|確率過程]]としてモデル化される。この場合、[[wikipedia:ja:相互相関関数|相互相関関数]]の値は複数の統計量(細胞活動の[[wikipedia:ja:平均|平均]]や[[wikipedia:ja:共分散|共分散]])を反映する。例えば、二つの細胞の活動が独立、つまり共分散が0であっても、両細胞の活動の平均が時間的に同じように変化すると、相互相関関数は時間差0で最大となる場合がある。実験データから計算した相互相関関数と、二つの細胞の活動が独立である場合に期待される相互相関関数([[wikipedia:ja:帰無仮説|帰無仮説]])の差を取ることで、(いくつかの仮定のもとに)二つの細胞の活動が独立かどうかを統計的に検討することができる<ref name=perkel><pubmed> 4292792 </pubmed></ref>。この差は[[wikipedia:ja:相互共分散関数|相互共分散関数]] <math>Cov_{XY}(\tau)</math> と呼ばれる。
 神経活動はしばしば[[wikipedia:ja:確率過程|確率過程]]としてモデル化される。この場合、相互相関関数の値は複数の統計量(細胞活動の[[wikipedia:ja:平均|平均]]や[[wikipedia:ja:共分散|共分散]])を反映する。例えば、二つの細胞の活動が独立、つまり共分散が0であっても、両細胞の活動の平均が時間的に同じように変化すると、相互相関関数は時間差0で最大となる場合がある。実験データから計算した相互相関関数と、二つの細胞の活動が独立である場合に期待される相互相関関数([[wikipedia:ja:帰無仮説|帰無仮説]])の差を取ることで、(いくつかの仮定のもとに)二つの細胞の活動が独立かどうかを統計的に検討することができる<ref name=perkel><pubmed> 4292792 </pubmed></ref>。この差は[[wikipedia:ja:相互共分散関数|相互共分散関数]] <math>Cov_{XY}(\tau)</math> と呼ばれる。
:<math>Cov_{XY}(\tau) = \sum_{t = 1}^{T} \bigl\{X(t)Y(t+\tau)-{\mu}_X(t){\mu}_Y(t+\tau)\bigr\} ,</math>
:<math>Cov_{XY}(\tau) = \sum_{t = 1}^{T} \bigl\{X(t)Y(t+\tau)-{\mu}_X(t){\mu}_Y(t+\tau)\bigr\} ,</math>


ここで <math>{\mu}_X(t)</math> と <math>{\mu}_Y(t)</math> は <math>t</math> 番目のビンにおける細胞 <math>X</math> と細胞 <math>Y</math> の活動の平均を表す。[[wikipedia:ja:相互共分散関数|相互共分散関数]]は、細胞 <math> X </math> の活動と細胞 <math> Y </math> の活動の間の相関(共分散)の度合いを表す(図2)。関数 <math>Cov_{XY}(\tau)</math> のことを相互相関関数と呼ぶ場合もあるので、注意が必要である。細胞活動の平均の変化が感覚入力によって引き起こされている場合、細胞活動の平均の[[wikipedia:ja:積|積]](帰無仮説)を[[wikipedia:ja:信号相関|信号相関]]、相互共分散関数を[[wikipedia:ja:ノイズ相関|ノイズ相関]]と呼ぶ。なお、上のように定義した相互共分散関数の値は計測時間や平均活動度の違いによって変化する。異なる実験間で結果を比較するために、相互共分散関数を総[[スパイク]]数、細胞活動の平均、分散等で割ることで正規化する場合がある<ref><pubmed> 11222658 </pubmed></ref>。
ここで <math>{\mu}_X(t)</math> と <math>{\mu}_Y(t)</math> は <math>t</math> 番目のビンにおける細胞 <math>X</math> と細胞 <math>Y</math> の活動の平均を表す。相互共分散関数は、細胞 <math> X </math> の活動と細胞 <math> Y </math> の活動の間の相関(共分散)の度合いを表す(図2)。関数 <math>Cov_{XY}(\tau)</math> のことを相互相関関数と呼ぶ場合もあるので、注意が必要である。細胞活動の平均の変化が感覚入力によって引き起こされている場合、細胞活動の平均の[[wikipedia:ja:積|積]](帰無仮説)を[[wikipedia:ja:信号相関|信号相関]]、相互共分散関数を[[wikipedia:ja:ノイズ相関|ノイズ相関]]と呼ぶ。なお、上のように定義した相互共分散関数の値は計測時間や平均活動度の違いによって変化する。異なる実験間で結果を比較するために、相互共分散関数を総[[スパイク]]数、細胞活動の平均、分散等で割ることで正規化する場合がある<ref><pubmed> 11222658 </pubmed></ref>。


 実際の実験においては、細胞活動の平均 <math>{\mu}_X(t)</math> 、 <math>{\mu}_Y(t)</math> は未知であるので、帰無仮説は計測した細胞活動をもとに設定しなければならない<ref name=perkel />。帰無仮説の設定は、同じ[[感覚]]刺激を繰り返し与えることで得た細胞活動データを用いて行う。通常、片方の細胞活動データの試行番号をランダムに並べ替えたり、試行番号を1つずらすことで、細胞活動が独立であった場合に得られるであろう相互相関関数を計算する。前者の帰無仮説設定法により得た相互共分散関数を[[シャッフル補正相互相関ヒストグラム]](shuffle-corrected cross-correlogram)、後者の方法により得た相互共分散関数を[[シフト補正相互相関ヒストグラム]](shift-corrected cross-correlogram)と呼ぶ。なお、スパイク活動の相関の有意性検定については、上記以外にも数多くの帰無仮説設定方法が考案されている<ref><pubmed> 19129298 </pubmed></ref>。
 実際の実験においては、細胞活動の平均 <math>{\mu}_X(t)</math> 、 <math>{\mu}_Y(t)</math> は未知であるので、帰無仮説は計測した細胞活動をもとに設定しなければならない<ref name=perkel />。帰無仮説の設定は、同じ[[感覚]]刺激を繰り返し与えることで得た細胞活動データを用いて行う。通常、片方の細胞活動データの試行番号をランダムに並べ替えたり、試行番号を1つずらすことで、細胞活動が独立であった場合に得られるであろう相互相関関数を計算する。前者の帰無仮説設定法により得た相互共分散関数を[[シャッフル補正相互相関ヒストグラム]](shuffle-corrected cross-correlogram)、後者の方法により得た相互共分散関数を[[シフト補正相互相関ヒストグラム]](shift-corrected cross-correlogram)と呼ぶ。なお、スパイク活動の相関の有意性検定については、上記以外にも数多くの帰無仮説設定方法が考案されている<ref><pubmed> 19129298 </pubmed></ref>。