「ナトリウムチャネル」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
35行目: 35行目:
== 膜電位依存的な活性化および不活性化  ==
== 膜電位依存的な活性化および不活性化  ==


[[Image:Resurgent電流.png|thumb|図4. マウスのプルキンエ細胞から記録されたRurgent 電流。Raman IM et al.1997より転載。]]
 一般に、イオンチャネルの電位センサーは4つの膜貫通ヘリックスで構成されており、4番目のヘッリクス(S4)に存在するリジンやアルギニンなどのプラス電荷を帯びたアミノ酸が電位の感知に重要であることが分かっている。[[細胞膜]]が脱分極すると電位センサーが動き、“ゲート“が開くことで、ナトリウムイオンが流れる。  
 一般に、イオンチャネルの電位センサーは4つの膜貫通ヘリックスで構成されており、4番目のヘッリクス(S4)に存在するリジンやアルギニンなどのプラス電荷を帯びたアミノ酸が電位の感知に重要であることが分かっている。[[細胞膜]]が脱分極すると電位センサーが動き、“ゲート“が開くことで、ナトリウムイオンが流れる。  


41行目: 42行目:
 遅い不活性化については速い不活性化ほど分子機構は明瞭ではない。[[ヒト]]の[[wikipedia:JA:骨格筋|骨格筋]]や[[wikipedia:JA:心筋|心筋]]の興奮性の異常を示すいくつかの遺伝病の研究により、遅い不活性化の異常を引き起こすアミノ酸変異が見つかっている。変異は複数の部分に渡っているため、遅い不活性化の過程には複数のドメインが関与していると考えられる。  
 遅い不活性化については速い不活性化ほど分子機構は明瞭ではない。[[ヒト]]の[[wikipedia:JA:骨格筋|骨格筋]]や[[wikipedia:JA:心筋|心筋]]の興奮性の異常を示すいくつかの遺伝病の研究により、遅い不活性化の異常を引き起こすアミノ酸変異が見つかっている。変異は複数の部分に渡っているため、遅い不活性化の過程には複数のドメインが関与していると考えられる。  


 通常、Navチャネルは不活性化が速いため、一過的にしか内向き電流は流れないが、[[小脳]]の[[プルキンエ細胞]]をはじめ多くの[[神経細胞]]では、長時間にわたり不活性化せずに開き続ける持続的な内向き電流が存在する([[持続性ナトリウム電流]])。また、これに加えて小脳のプルキンエ細胞などでは、不活性化状態ののち再開口が起こりやすく([[Resurgent電流]])<ref><pubmed>9169512</pubmed></ref>(図4参照)、これにより[[スパイク]]の後に[[脱分極]]が引き起こされることが知られているが、その分子メカニズムについてはまだ分っていないことが多い。 [[Image:Resurgent電流.png|thumb|図4. マウスのプルキンエ細胞から記録されたRurgent 電流。Raman IM et al.1997より転載。]]
 通常、Navチャネルは不活性化が速いため、一過的にしか内向き電流は流れないが、[[小脳]]の[[プルキンエ細胞]]をはじめ多くの[[神経細胞]]では、長時間にわたり不活性化せずに開き続ける持続的な内向き電流が存在する([[持続性ナトリウム電流]])。また、これに加えて小脳のプルキンエ細胞などでは、不活性化状態ののち再開口が起こりやすく([[Resurgent電流]])<ref><pubmed>9169512</pubmed></ref>(図4参照)、これにより[[スパイク]]の後に[[脱分極]]が引き起こされることが知られているが、その分子メカニズムについてはまだ分っていないことが多い。  


[[Image:Tree.png|thumb|300px|<b>図5. サブユニットの系統樹</b>]]   
[[Image:Tree.png|thumb|300px|<b>図5. サブユニットの系統樹</b>]]   
79

回編集