「視覚運動性眼振」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
3行目: 3行目:
要約:外界が大きく動く時、例えば、電車中でぼんやりと車窓から景色を眺めている時には、流れていく風景を追うよう遅い眼球運動(緩徐相)と、リセットのための緩徐相とは逆向きの速い眼球運動(急速相)が繰り返される。これを視(覚)運動性眼振(Optokinetic nystagmus)と呼ぶ。視運動性眼振の緩徐相の眼球運動は、周辺視による視機性眼球反応(optokinetic response, OKR)に起因する。視機性眼球反応は、網膜上の像が外界の動きによってブレないように作用する眼球運動であり、前庭動眼反射とともに姿勢保持に重要な役割を演じている。霊長類では、網膜の中心窩に対象を捉えてものを固視する(中心視)のための滑動性追跡眼球運動(smooth pursuit eye movement)が発達している。ヒトやサルの視運動性眼振の一部はこの滑動性追跡眼球運動に起因する。  
要約:外界が大きく動く時、例えば、電車中でぼんやりと車窓から景色を眺めている時には、流れていく風景を追うよう遅い眼球運動(緩徐相)と、リセットのための緩徐相とは逆向きの速い眼球運動(急速相)が繰り返される。これを視(覚)運動性眼振(Optokinetic nystagmus)と呼ぶ。視運動性眼振の緩徐相の眼球運動は、周辺視による視機性眼球反応(optokinetic response, OKR)に起因する。視機性眼球反応は、網膜上の像が外界の動きによってブレないように作用する眼球運動であり、前庭動眼反射とともに姿勢保持に重要な役割を演じている。霊長類では、網膜の中心窩に対象を捉えてものを固視する(中心視)のための滑動性追跡眼球運動(smooth pursuit eye movement)が発達している。ヒトやサルの視運動性眼振の一部はこの滑動性追跡眼球運動に起因する。  


1.視機性眼球反応(OKR)の神経回路と動特性
1.視機性眼球反応(OKR)の神経回路と動特性  


  視機性眼球反応(OKR)とは、動物のまわりの視野が動く時に、網膜に写る外界の像がブレないように眼が動く反射である。OKRを誘発するのは、網膜上に像の滑り(retinal slip)が生じることであり、眼が動くことによってretinal slipはキャンセルもしくは減少する。従って、OKRはネガテイブフィードバック制御の反射である。OKRはすべての動物種に見られる。実験的にOKRを誘発するには、動物の眼前に、コントラストが明瞭な縦縞もしくはチェック模様のドラム状の大きなスクリーンをおき、それを一方向もしくは正弦波状に回転させる(1,2)。周辺視しかない単眼視の動物種(魚類、鳥類、マウス、ラットやウサギ)では、スクリーンをゆっくりと動かした時に、それを追従するようにOKRが誘発される。ところが両眼視で中心視の発達しているサルやヒトなどの霊長類では、固視の機能があるので、ただ単に単純な模様のスクリーンを廻してもOKRはほとんど誘発されない。ヒトやサルでこのような方法でOKRが観察されるのは、固視機能があまり発達していない幼弱期か、あるいは特定の視標に注視していない時、例えば電車に乗ってぼんやりと外を眺めている時である。  
  視機性眼球反応(OKR)とは、動物のまわりの視野が動く時に、網膜に写る外界の像がブレないように眼が動く反射である。OKRを誘発するのは、網膜上に像の滑り(retinal slip)が生じることであり、眼が動くことによってretinal slipはキャンセルもしくは減少する。従って、OKRはネガテイブフィードバック制御の反射である。OKRはすべての動物種に見られる。実験的にOKRを誘発するには、動物の眼前に、コントラストが明瞭な縦縞もしくはチェック模様のドラム状の大きなスクリーンをおき、それを一方向もしくは正弦波状に回転させる(1,2)。周辺視しかない単眼視の動物種(魚類、鳥類、マウス、ラットやウサギ)では、スクリーンをゆっくりと動かした時に、それを追従するようにOKRが誘発される。ところが両眼視で中心視の発達しているサルやヒトなどの霊長類では、固視の機能があるので、ただ単に単純な模様のスクリーンを廻してもOKRはほとんど誘発されない。ヒトやサルでこのような方法でOKRが観察されるのは、固視機能があまり発達していない幼弱期か、あるいは特定の視標に注視していない時、例えば電車に乗ってぼんやりと外を眺めている時である。  
11行目: 11行目:
[[Image:図1 OKN.jpg|300px|図1.マウスを対象とした視機性眼球反応(OKR)の誘発と赤外線カメラを用いた測定システム。(A) マウスを円筒状の縞模様(ドットパターン)スクリーンの中に置き、頭を固定する。スクリーンを正弦波状に回転させたときに誘発される眼球運動を赤外線テレビカメラで記録し、瞳孔の中心の位置を計測する。(B)OKRのゲインと位相差の算出法。計測された眼球運動とスクリーンの動きとを比較し、ゲインと位相差(時間、もしくは1周期360度として角度に換算)を算出する。(C)マウスの水平性OKRの位相差とゲイン。(2)を改変。(D)黒眼ウサギの水平性OKRの位相差とゲイン。(1)を改変。]]  
[[Image:図1 OKN.jpg|300px|図1.マウスを対象とした視機性眼球反応(OKR)の誘発と赤外線カメラを用いた測定システム。(A) マウスを円筒状の縞模様(ドットパターン)スクリーンの中に置き、頭を固定する。スクリーンを正弦波状に回転させたときに誘発される眼球運動を赤外線テレビカメラで記録し、瞳孔の中心の位置を計測する。(B)OKRのゲインと位相差の算出法。計測された眼球運動とスクリーンの動きとを比較し、ゲインと位相差(時間、もしくは1周期360度として角度に換算)を算出する。(C)マウスの水平性OKRの位相差とゲイン。(2)を改変。(D)黒眼ウサギの水平性OKRの位相差とゲイン。(1)を改変。]]  


2.小脳片葉によるOKRゲインの適応調節 
2.小脳片葉によるOKRゲインの適応調節   


  OKRは、ゆっくりとした外界の動きにはよく追従できるので、それだけでretinal slipを十分少なくすることができるが、速い動きゲインはかなり低くなり、生じたretinal slipをネガテイブフイードバックの機構では十分に補正することができない。そこで小脳によるフィードフォーワード制御のメカニズムが必要となる。図2Aはマウスの例であるが、高速度で正弦波状に眼前のスクリーンを振動させことを1時間持続的に行うと適応が生じ、OKRゲインが増加する。同様なOKRの適応によるゲインの増加は、魚、鳥やウサギでも報告されている。このような1時間のトレーニングで生じるゲインの増加は通常24時間で回復するので短期の適応である。さらに、毎日1時間のOKRの訓練を1週間続けると、各日の訓練前のOKRゲインが徐々に上昇する。この長期間の訓練によるゲインの増加は、訓練終了後も2週間程度持続するので長期の適応である。小脳片葉が短期の適応に不可欠であることが、前庭動眼反射と同様にOKRでも様々な実験結果により確認されている(図2B)。片葉のH-ゾーンと呼ばれる領域のプルキンエ細胞には、平行線維を介してOKRを引き起こすのに必要な視覚情報が伝えられる。また適応に必要なretinal slipの情報は、登上線維を介して下オリーブ核(正中副オリーブ)背側帽(dorsal cap)から、H-ゾーンのプルキンエ細胞に伝えられる。一方、H-ゾーンのプルキンエ細胞は前庭動眼反射を中継する前庭神経核の神経細胞に投射する。長期抑圧とは、平行線維―プルキンエ細胞のシナプスの伝達効率が同じプルキンエ細胞に入力する登上線維の信号によって長期間にわたり減弱されるという可塑性であり、伊藤正男(東京大学名誉教授、理化学研究所特別顧問)らによって1982年に発見された。この長期抑圧が原因となって、片葉による前庭動眼反射とOKRのゲインの適応が生じるという仮説を片葉仮説と呼ぶ。片葉仮説は、片葉や下オリーブ核の破壊実験、薬理学や遺伝子ノックアウトマウスを用いた実験、片葉の神経活動の記録実験や計算論によるシミュレーションの研究により支持されている(3,4,6)。
  OKRは、ゆっくりとした外界の動きにはよく追従できるので、それだけでretinal slipを十分少なくすることができるが、速い動きゲインはかなり低くなり、生じたretinal slipをネガテイブフイードバックの機構では十分に補正することができない。そこで小脳によるフィードフォーワード制御のメカニズムが必要となる。図2Aはマウスの例であるが、高速度で正弦波状に眼前のスクリーンを振動させことを1時間持続的に行うと適応が生じ、OKRゲインが増加する。同様なOKRの適応によるゲインの増加は、魚、鳥やウサギでも報告されている。このような1時間のトレーニングで生じるゲインの増加は通常24時間で回復するので短期の適応である。さらに、毎日1時間のOKRの訓練を1週間続けると、各日の訓練前のOKRゲインが徐々に上昇する。この長期間の訓練によるゲインの増加は、訓練終了後も2週間程度持続するので長期の適応である。小脳片葉が短期の適応に不可欠であることが、前庭動眼反射と同様にOKRでも様々な実験結果により確認されている(図2B)。片葉のH-ゾーンと呼ばれる領域のプルキンエ細胞には、平行線維を介してOKRを引き起こすのに必要な視覚情報が伝えられる。また適応に必要なretinal slipの情報は、登上線維を介して下オリーブ核(正中副オリーブ)背側帽(dorsal cap)から、H-ゾーンのプルキンエ細胞に伝えられる。一方、H-ゾーンのプルキンエ細胞は前庭動眼反射を中継する前庭神経核の神経細胞に投射する。長期抑圧とは、平行線維―プルキンエ細胞のシナプスの伝達効率が同じプルキンエ細胞に入力する登上線維の信号によって長期間にわたり減弱されるという可塑性であり、伊藤正男(東京大学名誉教授、理化学研究所特別顧問)らによって1982年に発見された。この長期抑圧が原因となって、片葉による前庭動眼反射とOKRのゲインの適応が生じるという仮説を片葉仮説と呼ぶ。片葉仮説は、片葉や下オリーブ核の破壊実験、薬理学や遺伝子ノックアウトマウスを用いた実験、片葉の神経活動の記録実験や計算論によるシミュレーションの研究により支持されている(3,4,6)。  


   ところで、適応のような運動学習の結果は、脳の記憶としてある程度保持され利用されるはずである。記憶のもとになる神経の変化を記憶痕跡(memory trace)と呼ぶ。このOKRの適応の記憶痕跡が脳のどの部位に保持されているかが、神経組織の活動を局所麻酔剤で遮断する方法により調べられている。もし神経活動が遮断された脳部位に記憶痕跡が存在するならば、遮断により記憶が消され、適応は直ちに消去されるはずである。実験の結果は、前庭動眼反射の場合と同様に、数時間のトレーニングで生じた短期の適応の記憶の痕跡は片葉に保持されているのに対して、数日間の長期の適応の記憶の痕跡は片葉の出力先の前庭神経核に保持されていることを示唆する(図2B)。このようにトレーニングを繰り返し行うことで、OKRの適応の記憶痕跡がプルキンエ細胞からシナプスを越えて前庭神経核に移動することになるが、これがどのようなメカニズムによるものかはよく知られていない(7,8)。  
   ところで、適応のような運動学習の結果は、脳の記憶としてある程度保持され利用されるはずである。記憶のもとになる神経の変化を記憶痕跡(memory trace)と呼ぶ。このOKRの適応の記憶痕跡が脳のどの部位に保持されているかが、神経組織の活動を局所麻酔剤で遮断する方法により調べられている。もし神経活動が遮断された脳部位に記憶痕跡が存在するならば、遮断により記憶が消され、適応は直ちに消去されるはずである。実験の結果は、前庭動眼反射の場合と同様に、数時間のトレーニングで生じた短期の適応の記憶の痕跡は片葉に保持されているのに対して、数日間の長期の適応の記憶の痕跡は片葉の出力先の前庭神経核に保持されていることを示唆する(図2B)。このようにトレーニングを繰り返し行うことで、OKRの適応の記憶痕跡がプルキンエ細胞からシナプスを越えて前庭神経核に移動することになるが、これがどのようなメカニズムによるものかはよく知られていない(7,8)。  
21行目: 21行目:
3.視運動性眼振(OKN)とOKR  
3.視運動性眼振(OKN)とOKR  


  前庭や視覚の機能の検査に、ドラム状の縞模様のスクリーンを定加速度かつ定方向にまわすことで誘発されるOKNが用いられる。OKNは、1820年に、小脳のプルキンエ細胞の命名者であるJ. E. Purkinje (1787-1869) によって初めて記載された。 図3AにウサギとヒトのOKNの例を示す。OKNでは、遅い眼球運動と速い眼球運動が規則的に繰り返される。遅い眼球運動は、OKRと同じくスクリーンの回転と同方向に生じ、緩徐相(slow phase)と呼ばれる。一方、スクリーンの回転と逆方向に生じる速い眼球運動は、急速相(fast phase)と呼ばれる。ウサギでは、スクリーンの回転開始からかなり遅れてOKNの緩徐相が出現し、やがて一定速度に達する。その速度はスクリーンの速度に比べてかなり小さい。一方、ヒトやサルでは、緩徐相はスクリーンが回転を始めると急速に立ち上がり、そのあと数秒かけて徐々に増加しやがてスクリーンの回転速度にほぼ等しくなる。一方、OKNの緩徐相がスクリーンの回転速度に達した段階でスクリーンの回転を止めてまっ暗にすると、視運動性後眼振(optokinetic after nystagmus, OKAN) が生じる(図3B)。ヒトやサルのOKANの緩徐相の速度とその減衰の時間経過は、ウサギのOKANの緩徐相のそれらに似ている 。一方、ウサギで観察されるOKNの緩徐相には、サルやヒトで見られる速い立ち上がりの成分はなく、OKANの緩徐相と同じような遅い成分しかない。そこで、ヒトやサルのOKNの緩徐相のうちの数秒の時間経過で立ち上がる遅い部分とOKANの緩徐相が、OKRによるものと考えられる。ヒトやサルのOKNの緩徐相の立ち上がりの速い成分はOKRではなく、むしろに随意運動の滑動性追跡眼球運動に由来するようである(図3C)。サルでは両側の前庭器官を破壊するとOKANが完全に消失し、ヒトでも両側の迷路障害でOKANが障害される。ヒトで網膜の中心部の損傷により滑動性追跡眼球運動が障害されても、遅い成分のOKNは誘発される。これらの所見は、ヒトやサルの立ち上がりの遅いOKNの緩徐相 = OKANの緩徐相 = OKRという考え方を支持する(10)。
  前庭や視覚の機能の検査に、ドラム状の縞模様のスクリーンを定加速度かつ定方向にまわすことで誘発されるOKNが用いられる。OKNは、1820年に、小脳のプルキンエ細胞の命名者であるJ. E. Purkinje (1787-1869) によって初めて記載された。 図3AにウサギとヒトのOKNの例を示す。OKNでは、遅い眼球運動と速い眼球運動が規則的に繰り返される。遅い眼球運動は、OKRと同じくスクリーンの回転と同方向に生じ、緩徐相(slow phase)と呼ばれる。一方、スクリーンの回転と逆方向に生じる速い眼球運動は、急速相(fast phase)と呼ばれる。ウサギでは、スクリーンの回転開始からかなり遅れてOKNの緩徐相が出現し、やがて一定速度に達する。その速度はスクリーンの速度に比べてかなり小さい。一方、ヒトやサルでは、緩徐相はスクリーンが回転を始めると急速に立ち上がり、そのあと数秒かけて徐々に増加しやがてスクリーンの回転速度にほぼ等しくなる。一方、OKNの緩徐相がスクリーンの回転速度に達した段階でスクリーンの回転を止めてまっ暗にすると、視運動性後眼振(optokinetic after nystagmus, OKAN) が生じる(図3B)。ヒトやサルのOKANの緩徐相の速度とその減衰の時間経過は、ウサギのOKANの緩徐相のそれらに似ている 。一方、ウサギで観察されるOKNの緩徐相には、サルやヒトで見られる速い立ち上がりの成分はなく、OKANの緩徐相と同じような遅い成分しかない。そこで、ヒトやサルのOKNの緩徐相のうちの数秒の時間経過で立ち上がる遅い部分とOKANの緩徐相が、OKRによるものと考えられる。ヒトやサルのOKNの緩徐相の立ち上がりの速い成分はOKRではなく、むしろに随意運動の滑動性追跡眼球運動に由来するようである(図3C)。サルでは両側の前庭器官を破壊するとOKANが完全に消失し、ヒトでも両側の迷路障害でOKANが障害される。ヒトで網膜の中心部の損傷により滑動性追跡眼球運動が障害されても、遅い成分のOKNは誘発される。これらの所見は、ヒトやサルの立ち上がりの遅いOKNの緩徐相 = OKANの緩徐相 = OKRという考え方を支持する(10)。  


  ヒトのサルでは、眼前に提示した比較的大きなパターンをステップランプ状に動かす時に、サッケード眼球運動に引き続いてランプ状のパターンの動きに依存したドリフト状の遅い眼球運動が誘発される。この眼球運動は追従性眼球運動反応(ocular following response, OFR)と呼ばれる。OFRは前述の立ち上がりの速いOKNの緩徐相に相当するようであるが、その発現には大脳皮質視覚連合野MT野や橋核、小脳腹側傍片葉が関与する。滑動性追跡眼球運動には大脳皮質の前頭眼野や頭頂連合野に由来するものがあり、OFRはそのうちの頭頂連合野に由来するものと考えられる。  
  ヒトのサルでは、眼前に提示した比較的大きなパターンをステップランプ状に動かす時に、サッケード眼球運動に引き続いてランプ状のパターンの動きに依存したドリフト状の遅い眼球運動が誘発される。この眼球運動は追従性眼球運動反応(ocular following response, OFR)と呼ばれる。OFRは前述の立ち上がりの速いOKNの緩徐相に相当するようであるが、その発現には大脳皮質視覚連合野MT野や橋核、小脳腹側傍片葉が関与する。滑動性追跡眼球運動には大脳皮質の前頭眼野や頭頂連合野に由来するものがあり、OFRはそのうちの頭頂連合野に由来するものと考えられる。  
68

回編集