「カルシニューリン」の版間の差分

(ページの作成:「カルシニューリン(Calcineurin, CaN, CN)は、脳神経系に豊富に発現するカルシウム・カルモジュリン依存的セリン-スレオニン脱リ...」)
 
編集の要約なし
 
(3人の利用者による、間の31版が非表示)
1行目: 1行目:
カルシニューリン(Calcineurin, CaN, CN)は、脳神経系に豊富に発現するカルシウム・カルモジュリン依存的セリン-スレオニン脱リン酸化酵素である。PP1/PP2A/calcineurin スーパーファミリーに属する。<ref><pubmed>11015619</pubmed></ref>
<div align="right"> 
同義語:Protein phosphatase 2B (PP2B), Protein phosphatase 3 (ppp3), calcium-dependent serine-threonine phosphatase, caln; ccn1; cna1; calna1
<font size="+1">[http://researchmap.jp/mio_nonaka/?lang=japanese 野中美応]</font><br>
''Centre for Cognitive and Neural Systems, The University of Edinburgh''<br>
DOI:<selfdoi /> 原稿受付日:2013年1月8日 原稿完成日:2013年6月1日<br>担当編集委員:[http://researchmap.jp/2rikenbsi/?lang=japanese 林康紀](理化学研究所)<br>
</div>
英:Calcineurin 英略称:CaN, CN, caln, ccn1, cna1, calna1  


同義語:Protein phosphatase 2B ([[PP2B]]), Protein phosphatase 3 (ppp3), calcium-dependent serine-threonine phosphatase


カルシニューリンは、免疫系で抗原提示細胞からT細胞への活性化、IL-2の産生に関与することから、cyclosporinAやFK506といったカルシニューリン阻害剤は免疫抑制剤として使用されてきた。脳神経系においては、シナプス刺激などによるカルシウムにより活性化され、NFAT, dynamin I, l-I/DARPP-32, tau, CRTC, GluA1, FMRP, Bcl-2, GABAA receptorといった多様な基質を脱リン酸化する。長期抑制・長期増強などのシナプス可塑性、ひいては記憶学習や、神経突起伸長・細胞内カルシウム・遺伝子発現調節・アポトーシスの制御に関わるとされている。
{{box
|text= カルシニューリンは、脳神経系に豊富に発現する[[カルシウム・カルモジュリン依存的セリン-スレオニン脱リン酸化酵素]]である。[[PP1]]/[[PP2A]]/カルシニューリンスーパーファミリーに属する<ref name=ref1><pubmed>11015619</pubmed></ref> 脳神経系においては、[[シナプス]]刺激などによる[[カルシウム]]により活性化され、[[NFAT]]、[[ダイナミンI]]、[[Inhibitor-1]]([[L-I]])/[[DARPP-32]]、[[Tau]]、[[CRTC]]、[[GluA1]]、[[FMRP]]、[[Bcl-2]]、[[GABAA受容体|GABA<sub>A</sub>受容体]]といった多様な基質を脱リン酸化する。[[長期抑制]]・[[長期増強]]などの[[シナプス可塑性]]、ひいては[[記憶]][[学習]]や、[[神経突起]]伸長・細胞内カルシウム・遺伝子発現調節・[[アポトーシス]]の制御に関わるとされている。}}


==カルシニューリンとは==
== カルシニューリンとは ==
1978年にKleeらが初めて精製し<ref><pubmed>201280</pubmed></ref>、ホスホジエステラーゼの調節サブユニットとして報告し、calcineurinと名付けられたが、その後1982年にCohenらによって脱リン酸化酵素であると同定された<ref><pubmed>6279434</pubmed></ref>。哺乳類細胞においてCa2+により活性化される唯一の脱リン酸化酵素であり、脳神経系に豊富に発現する。進化的には、酵母からハエ・哺乳類に至るまで保存されている。
{{Infobox protein family
| Symbol =CaN, CN, PP2B, ppp3, caln, ccn1, cna1, calna1
| Name = Calcineurin
| image = 3LL8.pdb
| width =
| caption = Crystal structure of calcineurin in complex with AKAP79 peptide
| Pfam = PF00149
| Pfam_clan = CL0163
| InterPro =
| SMART =
| PROSITE =
| MEROPS =
| SCOP = 1fjm
| TCDB =
| OPM family =
| OPM protein =
| CAZy =
| CDD =
}}
 1978年にKleeらが初めて精製し<ref><pubmed>201280</pubmed></ref>、[[ホスホジエステラーゼ]]の調節サブユニットとして報告し、カルシニューリン(calcineurin)と名付けられたが、その後1982年にCohenらによって[[脱リン酸化酵素]]であると同定された<ref><pubmed>6279434</pubmed></ref>。[[wikipedia:ja:哺乳類|哺乳類]]細胞においてCa<sup>2+</sup>により活性化される唯一の脱リン酸化酵素であり、[[脳神経]]系に豊富に発現する。進化的には、[[wikipedia:ja:酵母|酵母]]から[[ショウジョウバエ|ハエ]]・哺乳類に至るまで保存されている。


==ドメイン構造==
==構造==
カルシニューリンは 触媒サブユニットであるCalcineurin A (57-59 kDa)と、修飾サブユニットであれるCalcineurin B (19-20 kDa)からなる。それぞれ、3種(PPP3CA, PPP3CB, and PPP3CC)と2種(PPP3R1, PPP3R2)の遺伝子にコードされる。PPP3R2はtestes特異的発現とされているが、その他はubiquitousに発現する。PPP3CCもtestes特異的とされていたが、脳における発現が確認されている。ラット脳内ではPPP3CAの方がPPP3CBよりも豊富に発現している。
=== ドメイン構造 ===
Calcineurin A は、N末端より、触媒ドメイン・Calcineurin B結合ドメイン・CaM結合ドメイン・自己抑制ドメイン(AID)からなる。触媒ドメインはPP2Aと49%、PP1と39%という高い相同性を持つ。Calcineurin Bはカルモジュリンと相同性があり、4つのCa2+結合ドメインであるEF-handを有し、N末端にミリストイル化を受ける。Calcineurin Bの1つのCa2+結合ドメインは高親和性で(Kd = 10^-7 M)、その他は低親和性(Kd = 0.5 ~ 1 uM)であるが、カルモジュリンと異なり、Calcineurin BはEDTA存在下でもCalcineurin A に結合する。
[[Image:Miononaka fig 1.jpg|thumb|right|300 px| '''図 カルシニューリンのドメイン構造''']]
 カルシニューリンは 触媒サブユニットであるカルシニューリン A (57-59 kDa)と、修飾サブユニットであるカルシニューリン B (19-20 kDa)からなる。それぞれ、3種(PPP3CA、PPP3CB、and PPP3CC)と2種(PPP3R1、PPP3R2)の遺伝子にコードされる(表)。


==構造==
 カルシニューリン A は、N末端より、触媒ドメイン・カルシニューリン B 結合ドメイン・[[カルモジュリン]](CaM)結合ドメイン・自己抑制ドメイン(AID)からなる(図)。触媒ドメインはPP2Aと49%、PP1と39%という高い相同性を持つ。
1995年に、カルシニューリン(C末端のCaM結合ドメイン・AIDドメインを欠く)と FKBP12-FK506 との複合体の構造が発表された。 <ref><pubmed>8524402</pubmed></ref>, <ref><pubmed>7543369</pubmed></ref>
 
 カルシニューリン B はカルモジュリンと相同性があり、4つのCa<sup>2+</sup>結合ドメインである[[EF-hand]]を有し、N末端に[[ミリストイル化]]を受ける(図)。カルシニューリン Bの1つのCa<sup>2+</sup>結合ドメインは高親和性で(Kd = 10<sup>-7</sup> M)、その他は低親和性(Kd = 0.5 ~ 1 uM)であるが、カルモジュリンと異なり、カルシニューリン Bは[[wikipedia:EGTA|EGTA]]存在下でもカルシニューリン A に結合する<ref name = ref4><pubmed>8204620</pubmed></ref>。
=== 立体構造  ===
 
 1995年に、カルシニューリン(C末端のCaM結合ドメイン・AIDドメインを欠く)と FKBP12-FK506 との複合体の構造が発表された。 <ref><pubmed>8524402</pubmed></ref> <ref><pubmed>7543369</pubmed></ref>
 
== 発現分布  ==
{|style="float:right; width:350px; border: 1px solid darkgray;"
|
{| class="wikitable"
|+表 カルシニューリンサブユニット
| align="center"|'''機能''' || align="center" |'''名称''' ||align="center" |'''サブユニット'''
|-
| rowspan="3"  align="center" |触媒サブユニット || rowspan="3" | カルシニューリン A || [http://mouse.brain-map.org/experiment/show/69817246 PPP3CA]
|-
|| [http://mouse.brain-map.org/experiment/show/71325360 PPP3CB]
|-
|| [http://mouse.brain-map.org/experiment/show/70784994 PPP3CC]
|-
| rowspan="2"  align="center" | 調節サブユニット|| rowspan="3" | カルシニューリン B ||  [http://mouse.brain-map.org/experiment/show/70812895 PPP3R1]
|-
|| [http://mouse.brain-map.org/experiment/show/69817252 PPP3R2]
|-
|}
|-
|遺伝子名はAllen Brain Atlasの[[in situハイブリダイゼーション|''in situ''ハイブリダイゼーション]]データーへリンクしている。
|}
 [http://mouse.brain-map.org/experiment/show/69817252 PPP3R2]は精巣特異的発現とされているが、その他はubiquitousに発現する<ref name=ref1 />。[http://mouse.brain-map.org/experiment/show/70784994 PPP3CC]も精巣特異的とされていたが、脳における発現が確認されている。
 
 マウス全脳の[[in situハイブリダイゼーション|''in situ''ハイブリダイゼーション]]で[http://mouse.brain-map.org/experiment/show/69817246 PPP3CA], [http://mouse.brain-map.org/experiment/show/71325360 PPP3CB] および [http://mouse.brain-map.org/experiment/show/70812895 PPP3R1]は脳のほぼ全域における発現が確認されているが、特に[[大脳皮質]]・[[海馬]]・[[線条体]]に豊富に発現する。カルシニューリン A においては、ラット脳内ではPPP3CAの方がPPP3CBよりも豊富に発現しており、PPP3CAの酵素活性がほぼ9割を占める。
 
 細胞内局在としては、主に細胞質に局在するが、NFATと共に核に移行し、また、精細胞においては主に核に局在するなど、核への分布も報告されている。脳の分画においては、細胞質および[[シナプトソーム]]に豊富に検出される。
 
== 酵素活性  ==
===調節機構===
 カルシニューリンの活性中心には、phosphataseコンセンサス配列であるDXH(X)n GDXXDR(X)m GNHD/E を含む。活性中心には[[wikipedia:Fe3+|Fe<sup>3+</sup>]]と[[wikipedia:Zn2+|Zn<sup>2+</sup>]]([[wikipedia:ja:錯体|錯体]])が含まれる。酵素の活性化には Calcineurin B とCa<sup>2+</sup>/カルモジュリンの結合を必要とする。CaMKなどの[[Ca2+/カルモジュリン依存性リン酸化酵素|Ca<sup>2+</sup>/カルモジュリン依存性リン酸化酵素]]との類似性から、Ca<sup>2+</sup>/カルモジュリンの結合により自己抑制ドメイン(AID)が外れるなどの構造変化に基づく活性化メカニズムが唱えられている。 カルモジュリンによる、Ca<sup>2+</sup>依存的な酵素活性化は協同的である。(ヒル係数 = 2.8 - 3)<ref name=ref4 />
 
=== 阻害剤  ===
 
 [[Cyclosporine A]]、[[FK506]]は、それぞれ [[Cyclophilin]]、[[FKBP]] ([[FK506-binding protein]]) の[[Immunophilin]]と結合し、カルシニューリン活性を阻害する。免疫系で[[抗原提示細胞]]から[[T細胞]]への活性化、特に[[IL-2]]、[[IL-4]]遺伝子発現調節を担う転写因子NFATを脱リン酸化して活性化することから<ref><pubmed>19596245</pubmed></ref>、cyclosporinA や FK506といったカルシニューリン阻害剤は免疫抑制剤として使用されてきた。その他、[[PP1]]、PP2Aの阻害剤である[[wikipedia:ja:オカダ酸|オカダ酸]]も高い濃度(~4 uM)では、カルシニューリン活性を阻害する。
 
== 脳神経系における役割  ==
 
=== 長期可塑性  ===
 
 カルモジュリン存在下で活性化に必要なCa<sup>2+</sup>濃度は 数百nM (CaM濃度に依存) の領域であり、[[&alpha;CaMKII]]などのCa<sup>2+</sup>依存性酵素よりも親和性が高いためにLismanらにより[[LTD]]への関与が示唆され<ref><pubmed>2556718</pubmed></ref>、それに合致する電気生理のデータも得られているが、必ずしもこの説を擁護する報告ばかりではない。以下は、LTDを引き起こすメカニズムの例である。<ref><pubmed>11433371</pubmed></ref>
 
*PP1の活性を抑制する I-1/DARPP-32 の[[PKA]]によるリン酸化サイト(PP1の抑制作用に必須)を脱リン酸化することにより、間接的にPP1の活性を制御する。
*GluA1のSer845の脱リン酸化(PKAと拮抗)によりLTDをひきおこす。
*[[NMDA型グルタミン酸受容体]]の脱感作を促進する。
 
=== 転写制御  ===
 
 [[AKAP150]] (ヒト[[AKAP79]]ホモログ) により、[[カルシウムチャネル|Ca<sup>2+</sup>チャネル]]の近傍にアンカリングされ<ref><pubmed>7528941</pubmed></ref>、カルシウム上昇に伴い、転写因子[[NFATc]]の脱リン酸化による[[wikipedia:ja:核|核]]移行・転写活性化を促す。また、[[CREB]]のコファクターである[[CRTC]]を脱リン酸化し、CREBの活性を増強する。


==酵素活性==
=== 小胞の内在化  ===
カルシニューリンの活性中心には、phosphataseコンセンサス配列であるDXH(X)n GDXXDR(X)m GNHD/E を含む。活性中心にはFe3+とZn2+(錯体)が含まれる。酵素の活性化にはCalcineurin BとCa2+/カルモジュリンの結合を必要とする。CaMKなどのCa2+/カルモジュリン依存性リン酸化酵素との類似性から、Ca2+/カルモジュリンの結合により自己抑制ドメイン(AID)が外れるなどの構造変化に基づく活性化メカニズムが唱えられている。
カルモジュリンによる、Ca2+依存的な酵素活性化は協同的である。(ヒル係数 = 2.8 - 3)<ref><pubmed>8204620</pubmed></ref>


==阻害剤==
 カルシニューリンはダイナミン I と結合し、[[エンドサイトーシス]]小胞を構成するタンパク質であるダイナミン、[[アンフィフィジン]]、[[シナプトジャニン]]らを脱リン酸化することで[[シナプス小胞]]のエンドサイトーシスを促進する<ref><pubmed>9651678</pubmed></ref>。 また、NMDA型[[グルタミン酸]]受容体依存的な[[AMPA型グルタミン酸受容体]]の内在化を担う。
Cyclosporine-A, FK506は、それぞれcyclophilin, FKBP (FK506-bindingprotin) のimmunophilinと結合し、カルシニューリン活性を阻害する。その他、PP1, PP2Aの阻害剤であるOkadaic acidも高い濃度(~4 uM)では、カルシニューリン活性を阻害する。


==脳神経系における役割==
== 脳神経疾患とのかかわり  ==
===長期可塑性===
CaM存在下で活性化に必要なCa2+濃度は 数百nM (CaM濃度に依存) の領域であり、CaMKIIaなどのCa2+依存性酵素よりも親和性が高いためにLismanらによりLTDへの関与が示唆され<ref><pubmed>2556718</pubmed></ref>,それに合致する電気生理のデータも得られているが、必ずしもこの説を擁護する報告ばかりではない。以下は、LTDを引き起こすメカニズムの例である。<ref><pubmed>11433371</pubmed></ref>


・PP1の活性を抑制するInhibitor-1 (I-1) / DARPP-32のPKAによるリン酸化サイト(PP1の抑制作用に必須)を脱リン酸化することにより、間接的にPP1の活性を制御する。
=== 統合失調症  ===


・GluA1のSer845の脱リン酸化(PKAと拮抗)によりLTDをひきおこす。
 カルシニューリン[[前脳]]特異的ノックアウトマウスは、[[ワーキングメモリー]]異常を含む、 [[統合失調症]]様の[[中間表現型]]を呈することが報告されている<ref><pubmed>11733061</pubmed></ref>。


・NMDA受容体の脱感作を促進する。
=== ダウン症候群  ===


===転写制御===
 カルシニューリンはregulator of Calcineurin 1(RCAN1)、別名Down syndrome critical region gene 1(DSCR1)と結合し<ref><pubmed>10861295</pubmed></ref>、転写制御・カルシウム動態制御を介してシナプス可塑性・シナプス形態・短期記憶・長期記憶を制御する<ref><pubmed>22511596</pubmed></ref>。
AKAP150 (human AKAP79) により、Ca2+チャネルの近傍にアンカリングされ<ref><pubmed>7528941</pubmed></ref>、カルシウム上昇に伴い、転写因子NFATcの脱リン酸化による核移行・転写活性化を促す。また、CREBのコファクターであるCRTCを脱リン酸化し、CREBの活性を増強する。


===小胞の内在化===
=== アルツハイマー病  ===
カルシニューリンはdynamin I と結合し、エンドサイトーシス小胞を構成するタンパク質であるdynamin, amphiphysin, synaptojaninらを脱リン酸化することでシナプス小胞のエンドサイトーシスを促進する<ref><pubmed>9651678</pubmed></ref>。
また、NMDA受容体依存的なAMPA受容体の内在化を担う。


==脳神経疾患とのかかわり==
 カルシニューリンは直接、或いは間接的に[[GSK3β]]や[[Tau]]のリン酸化状態を制御するとされる。 また、[[アストロサイト]]と神経細胞において、[[Aβ]]によるカルシニューリンとNFATのシグナリングに不調をきたすことが[[細胞毒性]]をひきおこす一因となる<ref><pubmed>22654726</pubmed></ref>
===統合失調症===
カルシニューリン前脳特異的ノックアウトマウスは統合失調症様症状を示す。<ref><pubmed>11733061</pubmed></ref>
PPP3CC遺伝子は連鎖解析で統合失調症の感受性座に位置する。


===ダウン症候群===
== 関連項目  ==
カルシニューリンはRCAN1 (regulator of Calcineurin 1)、別名、DSCR1 (Down syndrome critical region gene 1)と結合する。


===アルツハイマー病===
*[[脱リン酸化酵素]]
カルシニューリンは直接、或いは間接的にGSK3betaやtauのリン酸化状態を制御するとされる。
*[[カルモジュリン]]
また、アストロサイトと神経細胞において、AbetaによるカルシニューリンとNFATのシグナリングに不調をきたすことが細胞毒性をひきおこす一因となる。
*[[カルシウム/カルモジュリン依存性タンパク質リン酸化酵素]] (CaMK)
*[[PP1]]
*[[PP2A]]
*[[長期増強現象]]
*[[長期抑圧現象]]
*[[イミュノフィリン]]


==関連項目==
== 参考文献  ==
脱リン酸化酵素
カルモジュリン
Ca2+/カルモジュリン依存性キナーゼ (CaMK)
PP1
PP2A
LTP/LTD
immunophilin


<references />
<references />
(執筆者:野中 美応、担当編集委員:尾藤 晴彦)

2014年6月18日 (水) 17:09時点における最新版

野中美応
Centre for Cognitive and Neural Systems, The University of Edinburgh
DOI:10.14931/bsd.3058 原稿受付日:2013年1月8日 原稿完成日:2013年6月1日
担当編集委員:林康紀(理化学研究所)

英:Calcineurin 英略称:CaN, CN, caln, ccn1, cna1, calna1

同義語:Protein phosphatase 2B (PP2B), Protein phosphatase 3 (ppp3), calcium-dependent serine-threonine phosphatase

 カルシニューリンは、脳神経系に豊富に発現するカルシウム・カルモジュリン依存的セリン-スレオニン脱リン酸化酵素である。PP1/PP2A/カルシニューリンスーパーファミリーに属する[1] 脳神経系においては、シナプス刺激などによるカルシウムにより活性化され、NFATダイナミンIInhibitor-1(L-I)/DARPP-32TauCRTCGluA1FMRPBcl-2GABAA受容体といった多様な基質を脱リン酸化する。長期抑制長期増強などのシナプス可塑性、ひいては記憶学習や、神経突起伸長・細胞内カルシウム・遺伝子発現調節・アポトーシスの制御に関わるとされている。

カルシニューリンとは

Calcineurin
Crystal structure of calcineurin in complex with AKAP79 peptide
Identifiers
Symbol CaN, CN, PP2B, ppp3, caln, ccn1, cna1, calna1
Pfam PF00149
Pfam clan CL0163
SCOP 1fjm
SUPERFAMILY 1fjm

 1978年にKleeらが初めて精製し[2]ホスホジエステラーゼの調節サブユニットとして報告し、カルシニューリン(calcineurin)と名付けられたが、その後1982年にCohenらによって脱リン酸化酵素であると同定された[3]哺乳類細胞においてCa2+により活性化される唯一の脱リン酸化酵素であり、脳神経系に豊富に発現する。進化的には、酵母からハエ・哺乳類に至るまで保存されている。

構造

ドメイン構造

 
図 カルシニューリンのドメイン構造

 カルシニューリンは 触媒サブユニットであるカルシニューリン A (57-59 kDa)と、修飾サブユニットであるカルシニューリン B (19-20 kDa)からなる。それぞれ、3種(PPP3CA、PPP3CB、and PPP3CC)と2種(PPP3R1、PPP3R2)の遺伝子にコードされる(表)。

 カルシニューリン A は、N末端より、触媒ドメイン・カルシニューリン B 結合ドメイン・カルモジュリン(CaM)結合ドメイン・自己抑制ドメイン(AID)からなる(図)。触媒ドメインはPP2Aと49%、PP1と39%という高い相同性を持つ。

 カルシニューリン B はカルモジュリンと相同性があり、4つのCa2+結合ドメインであるEF-handを有し、N末端にミリストイル化を受ける(図)。カルシニューリン Bの1つのCa2+結合ドメインは高親和性で(Kd = 10-7 M)、その他は低親和性(Kd = 0.5 ~ 1 uM)であるが、カルモジュリンと異なり、カルシニューリン BはEGTA存在下でもカルシニューリン A に結合する[4]

立体構造

 1995年に、カルシニューリン(C末端のCaM結合ドメイン・AIDドメインを欠く)と FKBP12-FK506 との複合体の構造が発表された。 [5] [6]

発現分布

表 カルシニューリンサブユニット
機能 名称 サブユニット
触媒サブユニット カルシニューリン A PPP3CA
PPP3CB
PPP3CC
調節サブユニット カルシニューリン B PPP3R1
PPP3R2
遺伝子名はAllen Brain Atlasのin situハイブリダイゼーションデーターへリンクしている。

 PPP3R2は精巣特異的発現とされているが、その他はubiquitousに発現する[1]PPP3CCも精巣特異的とされていたが、脳における発現が確認されている。

 マウス全脳のin situハイブリダイゼーションPPP3CA, PPP3CB および PPP3R1は脳のほぼ全域における発現が確認されているが、特に大脳皮質海馬線条体に豊富に発現する。カルシニューリン A においては、ラット脳内ではPPP3CAの方がPPP3CBよりも豊富に発現しており、PPP3CAの酵素活性がほぼ9割を占める。

 細胞内局在としては、主に細胞質に局在するが、NFATと共に核に移行し、また、精細胞においては主に核に局在するなど、核への分布も報告されている。脳の分画においては、細胞質およびシナプトソームに豊富に検出される。

酵素活性

調節機構

 カルシニューリンの活性中心には、phosphataseコンセンサス配列であるDXH(X)n GDXXDR(X)m GNHD/E を含む。活性中心にはFe3+Zn2+錯体)が含まれる。酵素の活性化には Calcineurin B とCa2+/カルモジュリンの結合を必要とする。CaMKなどのCa2+/カルモジュリン依存性リン酸化酵素との類似性から、Ca2+/カルモジュリンの結合により自己抑制ドメイン(AID)が外れるなどの構造変化に基づく活性化メカニズムが唱えられている。 カルモジュリンによる、Ca2+依存的な酵素活性化は協同的である。(ヒル係数 = 2.8 - 3)[4]

阻害剤

 Cyclosporine AFK506は、それぞれ CyclophilinFKBP (FK506-binding protein) のImmunophilinと結合し、カルシニューリン活性を阻害する。免疫系で抗原提示細胞からT細胞への活性化、特にIL-2IL-4遺伝子発現調節を担う転写因子NFATを脱リン酸化して活性化することから[7]、cyclosporinA や FK506といったカルシニューリン阻害剤は免疫抑制剤として使用されてきた。その他、PP1、PP2Aの阻害剤であるオカダ酸も高い濃度(~4 uM)では、カルシニューリン活性を阻害する。

脳神経系における役割

長期可塑性

 カルモジュリン存在下で活性化に必要なCa2+濃度は 数百nM (CaM濃度に依存) の領域であり、αCaMKIIなどのCa2+依存性酵素よりも親和性が高いためにLismanらによりLTDへの関与が示唆され[8]、それに合致する電気生理のデータも得られているが、必ずしもこの説を擁護する報告ばかりではない。以下は、LTDを引き起こすメカニズムの例である。[9]

  • PP1の活性を抑制する I-1/DARPP-32 のPKAによるリン酸化サイト(PP1の抑制作用に必須)を脱リン酸化することにより、間接的にPP1の活性を制御する。
  • GluA1のSer845の脱リン酸化(PKAと拮抗)によりLTDをひきおこす。
  • NMDA型グルタミン酸受容体の脱感作を促進する。

転写制御

 AKAP150 (ヒトAKAP79ホモログ) により、Ca2+チャネルの近傍にアンカリングされ[10]、カルシウム上昇に伴い、転写因子NFATcの脱リン酸化による移行・転写活性化を促す。また、CREBのコファクターであるCRTCを脱リン酸化し、CREBの活性を増強する。

小胞の内在化

 カルシニューリンはダイナミン I と結合し、エンドサイトーシス小胞を構成するタンパク質であるダイナミン、アンフィフィジンシナプトジャニンらを脱リン酸化することでシナプス小胞のエンドサイトーシスを促進する[11]。 また、NMDA型グルタミン酸受容体依存的なAMPA型グルタミン酸受容体の内在化を担う。

脳神経疾患とのかかわり

統合失調症

 カルシニューリン前脳特異的ノックアウトマウスは、ワーキングメモリー異常を含む、 統合失調症様の中間表現型を呈することが報告されている[12]

ダウン症候群

 カルシニューリンはregulator of Calcineurin 1(RCAN1)、別名Down syndrome critical region gene 1(DSCR1)と結合し[13]、転写制御・カルシウム動態制御を介してシナプス可塑性・シナプス形態・短期記憶・長期記憶を制御する[14]

アルツハイマー病

 カルシニューリンは直接、或いは間接的にGSK3βTauのリン酸化状態を制御するとされる。 また、アストロサイトと神経細胞において、によるカルシニューリンとNFATのシグナリングに不調をきたすことが細胞毒性をひきおこす一因となる[15]

関連項目

参考文献

  1. 1.0 1.1 Rusnak, F., & Mertz, P. (2000).
    Calcineurin: form and function. Physiological reviews, 80(4), 1483-521. [PubMed:11015619] [WorldCat] [DOI]
  2. Klee, C.B., & Krinks, M.H. (1978).
    Purification of cyclic 3',5'-nucleotide phosphodiesterase inhibitory protein by affinity chromatography on activator protein coupled to Sepharose. Biochemistry, 17(1), 120-6. [PubMed:201280] [WorldCat] [DOI]
  3. Stewart, A.A., Ingebritsen, T.S., Manalan, A., Klee, C.B., & Cohen, P. (1982).
    Discovery of a Ca2+- and calmodulin-dependent protein phosphatase: probable identity with calcineurin (CaM-BP80). FEBS letters, 137(1), 80-4. [PubMed:6279434] [WorldCat] [DOI]
  4. 4.0 4.1 Stemmer, P.M., & Klee, C.B. (1994).
    Dual calcium ion regulation of calcineurin by calmodulin and calcineurin B. Biochemistry, 33(22), 6859-66. [PubMed:8204620] [WorldCat] [DOI]
  5. Kissinger, C.R., Parge, H.E., Knighton, D.R., Lewis, C.T., Pelletier, L.A., Tempczyk, A., ..., & Moomaw, E.W. (1995).
    Crystal structures of human calcineurin and the human FKBP12-FK506-calcineurin complex. Nature, 378(6557), 641-4. [PubMed:8524402] [WorldCat] [DOI]
  6. Griffith, J.P., Kim, J.L., Kim, E.E., Sintchak, M.D., Thomson, J.A., Fitzgibbon, M.J., ..., & Navia, M.A. (1995).
    X-ray structure of calcineurin inhibited by the immunophilin-immunosuppressant FKBP12-FK506 complex. Cell, 82(3), 507-22. [PubMed:7543369] [WorldCat] [DOI]
  7. Crabtree, G.R., & Schreiber, S.L. (2009).
    SnapShot: Ca2+-calcineurin-NFAT signaling. Cell, 138(1), 210, 210.e1. [PubMed:19596245] [PMC] [WorldCat] [DOI]
  8. Lisman, J. (1989).
    A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proceedings of the National Academy of Sciences of the United States of America, 86(23), 9574-8. [PubMed:2556718] [PMC] [WorldCat] [DOI]
  9. Winder, D.G., & Sweatt, J.D. (2001).
    Roles of serine/threonine phosphatases in hippocampal synaptic plasticity. Nature reviews. Neuroscience, 2(7), 461-74. [PubMed:11433371] [WorldCat] [DOI]
  10. Coghlan, V.M., Perrino, B.A., Howard, M., Langeberg, L.K., Hicks, J.B., Gallatin, W.M., & Scott, J.D. (1995).
    Association of protein kinase A and protein phosphatase 2B with a common anchoring protein. Science (New York, N.Y.), 267(5194), 108-11. [PubMed:7528941] [WorldCat] [DOI]
  11. Marks, B., & McMahon, H.T. (1998).
    Calcium triggers calcineurin-dependent synaptic vesicle recycling in mammalian nerve terminals. Current biology : CB, 8(13), 740-9. [PubMed:9651678] [WorldCat] [DOI]
  12. Zeng, H., Chattarji, S., Barbarosie, M., Rondi-Reig, L., Philpot, B.D., Miyakawa, T., ..., & Tonegawa, S. (2001).
    Forebrain-specific calcineurin knockout selectively impairs bidirectional synaptic plasticity and working/episodic-like memory. Cell, 107(5), 617-29. [PubMed:11733061] [WorldCat] [DOI]
  13. Fuentes, J.J., Genescà, L., Kingsbury, T.J., Cunningham, K.W., Pérez-Riba, M., Estivill, X., & de la Luna, S. (2000).
    DSCR1, overexpressed in Down syndrome, is an inhibitor of calcineurin-mediated signaling pathways. Human molecular genetics, 9(11), 1681-90. [PubMed:10861295] [WorldCat] [DOI]
  14. Martin, K.R., Corlett, A., Dubach, D., Mustafa, T., Coleman, H.A., Parkington, H.C., ..., & Pritchard, M.A. (2012).
    Over-expression of RCAN1 causes Down syndrome-like hippocampal deficits that alter learning and memory. Human molecular genetics, 21(13), 3025-41. [PubMed:22511596] [WorldCat] [DOI]
  15. Reese, L.C., & Taglialatela, G. (2011).
    A role for calcineurin in Alzheimer's disease. Current neuropharmacology, 9(4), 685-92. [PubMed:22654726] [PMC] [WorldCat] [DOI]