「ZOファミリー」の版間の差分

提供:脳科学辞典
ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
 
(2人の利用者による、間の5版が非表示)
2行目: 2行目:
<font size="+1">岩下 美里、*[http://researchmap.jp/kosodo 小曽戸 陽一]</font><br>
<font size="+1">岩下 美里、*[http://researchmap.jp/kosodo 小曽戸 陽一]</font><br>
''Korea Brain Research Institute(韓国)Mechanoneuroscience Lab''<br>
''Korea Brain Research Institute(韓国)Mechanoneuroscience Lab''<br>
DOI:<selfdoi /> 原稿受付日:2016年3月21日 原稿完成日:2016年月日<br>
DOI:<selfdoi /> 原稿受付日:2016年3月21日 原稿完成日:2016年4月14日<br>
担当編集委員:[http://researchmap.jp/noriko1128 大隅 典子](東北大学 大学院医学系研究科 附属創生応用医学研究センター 脳神経科学コアセンター 発生発達神経科学分野)<br>*:責任著者
担当編集委員:[http://researchmap.jp/noriko1128 大隅 典子](東北大学 大学院医学系研究科 附属創生応用医学研究センター 脳神経科学コアセンター 発生発達神経科学分野)<br>*:責任著者
</div>
</div>
10行目: 10行目:
同義語:tight junction protein
同義語:tight junction protein


{{box|text= ZOファミリータンパク質はタイトジャンクションを構成する主要な分子である。細胞や組織のアピカル側に局在し、細胞極性形成に関わると考えられている。また、タイトジャンクションだけでなく、アドヘレンスジャンクションやギャップジャンクションにも局在が見られることから、広く細胞間接着構造の維持に関与する分子であると考えられる。近年では、細胞内シグナル伝達分子や転写調節因子として働き、細胞増殖を調節するという報告もなされている。脳神経系では、発生期の神経上皮組織において神経前駆細胞の極性形成に関わる。また、ギャップ結合を介したグリア細胞同士の細胞間コミュニケーションへの関与も示唆されている。一方、血液脳関門や血液脳脊髄液関門などの組織と体液の境界領域において、様々な物質の透過を調節するバリアとして機能し、脳神経系の恒常性の維持に寄与している。
{{box|text= ZOファミリータンパク質はタイトジャンクションを構成する主要な分子である。細胞や組織のアピカル側に局在し、細胞極性形成に関わると考えられ ている。また、タイトジャンクションだけでなく、アドヘレンスジャンクションやギャップジャンクションにも局在が見られることから、広く細胞間結合構造の 維持に関与する分子であると考えられる。近年では、細胞内シグナル伝達分子や転写調節因子として働き、細胞増殖を調節するという報告もなされている。脳神 経系では、発生期の神経上皮組織において神経前駆細胞の極性形成に関わる。また、ギャップ結合を介したグリア細胞同士の細胞間コミュニケーションへの関与 も示唆されている。一方、血液脳関門や血液脳脊髄液関門などの組織と体液の境界領域において、様々な物質の透過を調節するバリアとして機能し、脳神経系の 恒常性の維持に寄与している。}}
}}
{{PBB|geneid=7082}}{{PBB|geneid=9414}}{{PBB|geneid=27134}}
{{PBB|geneid=7082}}{{PBB|geneid=9414}}{{PBB|geneid=27134}}
==ZOファミリーとは==
==ZOファミリーとは==
 [[wikipedia:ja:多細胞生物|多細胞生物]]の[[wikipedia:ja:上皮組織|上皮組織]]では、[[wikipedia:ja:上皮細胞|上皮細胞]]が単層あるいは重層に配列し、互いに接着したシート状構造を呈する。上皮シート構造の形成・維持には、頂端側に存在する[[密着結合]]・[[接着結合]]・[[接着斑]]からなる接着複合体が重要な役割を果たしている。ZO ファミリータンパク質は、1986年に、密着結合に含まれるタンパク質として同定された表在性膜タンパク質である<ref name=ref11 /><ref name=ref29 />。
 ZO ファミリータンパク質は、上皮組織の密着結合に含まれるタンパク質として同定された表在性膜タンパク質である<ref name=ref11 /> <ref name=ref29 />。[[wikipedia:ja:多細胞生物|多細胞生物]]の[[wikipedia:ja:上皮組織|上皮組織]]では、[[wikipedia:ja:上皮細胞|上皮細胞]]が互いに接着したシート状構造を呈する。上皮シート構造の形成・維持には、頂端側に存在する[[密着結合]]・[[接着結合]]・デスモソーム結合といった、細胞間結合構造が重要な役割を果たしている。ZOファミリータンパク質は、細胞間結合構造の裏打ちタンパクとして働き、主に(1)細胞間結合構造の形成と維持、(2)物質透過の制御、(3)細胞極性形成などの役割を担っている。近年では、ZOタンパク質が核内に移動し、細胞内シグナル伝達や転写調節を担うことも報告されている<ref name=ref3><pubmed>20224657</pubmed></ref>。
 
==構造==
[[image:zo-1-1.png|thumb|350px|'''図1.ZOタンパク質構造'''<ref name=ref4><pubmed>12141438</pubmed></ref>]]
[[image:zo-1-2.png|thumb|350px|'''図2.ZO-1タンパク質の構造'''<br>N末端側にPDドメイン(1、2、3の数字で示す)、SH3ドメイン、GUK(GK)ドメインが存在する。C末端側にはプロリンリッチな領域(P)、選択的スプライシング部位(α、β、γ)が存在する。+、-はそれぞれ塩基性領域、酸性領域を表す<ref name=ref11><pubmed>10966866</pubmed></ref>。]]
 
 ZOファミリータンパク質(図1)は、[[membrane-associated guanylate kinase]](MAGUK)ファミリーに分類される。分子量220kDaの[[ZO-1]]<ref name=ref29><pubmed>3528172</pubmed></ref> <ref name=ref18><pubmed>8486731</pubmed></ref>、160kDaの[[ZO-2]]<ref name=ref12><pubmed>2014265</pubmed></ref> <ref name=ref20><pubmed>8132716</pubmed></ref>、130kDaの [[ZO-3]]<ref name=ref13><pubmed>9531559</pubmed></ref>の3種類がある。これらに共通の構造として、3個の[[PDZドメイン]]、1個の[[SH3ドメイン|Src homology 3(SH3)ドメイン]]、1個の[[グアニル酸キナーゼ (GUKまたはGK)ドメイン|グアニル酸キナーゼドメイン]]が挙げられる。また、プロリンリッチ領域が、ZO-1、ZO-2ではカルボキシル末端側、ZO-3では第2PDZドメインと第3PDZドメインの間に存在する<ref name=ref11 />。


 3種のZOタンパク質を区別するのはC末端領域の構造である。ZO-1のC末領域は他の2種よりも長い(図2)。この領域にはアクチン結合部位があり、細胞質側で細胞骨格系であるF-アクチンと結合する<ref name=ref6><pubmed>9792688</pubmed></ref> <ref name=ref19><pubmed>9214391</pubmed></ref>
==構造ならびにファミリー==
[[image:zo-1-2.png|thumb|350px|'''図1.ZOファミリータンパク質の構造'''<br>N末端側にPDZドメイン(1、2、3の数字で示す)、SH3ドメイン、GUK(GK)ドメインが存在する。 ZO-1、ZO-2のC末端側およびZO-3のN末端側にはプロリンリッチな領域(P)が存在する。ZO-1とZO-2のC末端側には選択的スプライシング部位(α、β、γ)が存在する。+、-はそれぞれ塩基性領域、酸性領域を表す。▼は核局在シグナル領域、▽は核外移行シグナル領域を示す<ref name=ref11><pubmed>10966866</pubmed></ref>を一部改変。]]


 さらに、C末端側には3カ所の選択的スプライシング部位α、β、γがあり、多様な[[スプライスバリアント]]が存在する<ref name=ref11 /> <ref name=ref5><pubmed>22083955</pubmed></ref>。ZO-2では2カ所、ZO-3にはない<ref name=ref11 />。
 ZOファミリータンパク質('''図1''')は、[[membrane-associated guanylate kinase]](MAGUK)ファミリーに分類される。分子量220kDaの[[ZO-1]]<ref name=ref29><pubmed>3528172</pubmed></ref> <ref name=ref18><pubmed>8486731</pubmed></ref>、160kDaの[[ZO-2]]<ref name=ref12><pubmed>2014265</pubmed></ref> <ref name=ref20><pubmed>8132716</pubmed></ref>、130kDaの [[ZO-3]]<ref name=ref13><pubmed>9531559</pubmed></ref>の3種類がある。これらに共通の構造として、3個の[[PDZドメイン]]、1個の[[SH3ドメイン|Src homology 3(SH3)ドメイン]]、1個の[[グアニル酸キナーゼドメイン|グアニル酸キナーゼ (GUKまたはGK)ドメイン]]が挙げられる。また、プロリンリッチ領域が、ZO-1、ZO-2ではカルボキシル末端側、ZO-3では第2PDZドメインと第3PDZドメインの間に存在する<ref name=ref11 />。また、ZO-1およびZO-3は2つの[[核局在シグナル]]領域を、ZO-2は核局在シグナル領域と[[核外移行シグナル]]領域をひとつずつ持っている<ref name=ref11><pubmed>10966866</pubmed></ref> <ref name=ref10><pubmed>10094817</pubmed></ref>。


 また、ZO-1は第1PDZドメインおよびGUK領域に[[wikipedia:ja:核移行シグナル|核移行シグナル]]領域をもつ<ref name=ref10><pubmed>10094817</pubmed></ref>。これらのことから、核内で遺伝子発現を調節する働きもあると考えられる。
 3種のZOタンパク質を区別するのはC末端領域の構造である('''図1''')。ZO-1とZO-2のC末領域には[[選択的スプライシング]]部位があり、多様な[[スプライスバリアント]]が存在する<ref name=ref6><pubmed>9792688</pubmed></ref> <ref name=ref19><pubmed>9214391</pubmed></ref>。ZO-1には3カ所、ZO-2には2カ所が報告されているが、ZO-3には選択的スプライシング部位がない<ref name=ref11 />。 スプライスバリアントの多様性が、組織や細胞における発現の違いに反映されると考えられる<ref name=ref11 />。


 これらの違いが、3種のタンパク質の機能の違いを生み出すと考えられている。
==結合タンパク質==
 ZOファミリータンパク質の主な結合パートナーは、膜タンパク質、[[細胞骨格]]、[[カドヘリン]]と複合体を形成するタンパク質群([[カテニン]])、およびZOファミリータンパク質である。細胞膜側で膜タンパク質と、細胞質側で細胞骨格、カテニン、ZOファミリーと結合する。


==発現と機能==
 密着結合には[[クローディン]]、[[オクルディン]]といった膜貫通型タンパク質が存在する<ref name=ref30><pubmed>16923393</pubmed></ref>。各ZOファミリータンパク質は、第一PDZドメインを介してクローディンと結合する。オクルディンとの結合部位は、ZO-1ではGUKドメイン、ZO-2では第一PDZドメインからGUKドメインまでの、C末端を除いた領域である。ギャップ結合には、膜貫通型タンパクである[[コネクシン]]ファミリータンパク質が存在する。ZOファミリータンパク質は、PDZドメインを介してこれらと結合する<ref name=ref9><pubmed>9707407</pubmed></ref>
<u>編集部コメント:組織発現(末梢も含む)について御記述下さい。</u>


<u>編集部コメント:またこの辺りを図示していただけると大変良いかと思います。</u>
 一方、密着結合部位の細胞質側では、ZOファミリータンパク質はC末端側を介して細胞骨格である[[アクチン|F-アクチン]]と結合する<ref name=ref6><pubmed>9792688</pubmed></ref> <ref name=ref19><pubmed>9214391</pubmed></ref>。接着結合部位では、ZO-1はGUKドメインを介して[[α-カテニン]]と、ZO-2はC末端を除く部位でα-カテニンと、ZO-3はC末端側で[[P120カテニン]]と結合する<ref name=ref18><pubmed>8486731</pubmed></ref> <ref name=ref28><pubmed>8636221</pubmed></ref>。また、ZOタンパク間の結合は、PDZドメインを介して行われる。


 ZOファミリータンパク質は、[[細胞膜]]側で密着結合や接着結合を構成するタンパク質群と結合し、細胞質側で[[細胞骨格]]と結合する。これにより、細胞間接着構造を細胞の適切な位置に維持している。また、密着結合の形成により[[膜タンパク質]]の拡散が抑えられ、細胞の頂端側と基底側で膜組成に差が生まれることから、[[細胞極性]]形成にも関与すると考えられる。近年では、ZOタンパク質が核内に移動することにより、[[細胞内シグナル伝達]]や[[転写調節]]を担うことも報告されている<ref name=ref3><pubmed>20224657</pubmed></ref>。
==組織発現==
 ZOファミリーの発現は主に上皮組織や間葉系組織で観察される。ZO-1の組織発現は、受精後から生体まで、幅広く報告されている。一方、ZO-2およびZO-3の組織発現については、胎生期から生後直後の時期に関する報告がほとんどである。


 また、非上皮性の細胞や密着結合を欠く細胞では、接着結合部位で[[カドヘリン]]や[[カテニン]]と結合する<ref name=ref18 /> <ref name=ref28><pubmed>8636221</pubmed></ref>。さらに、ギャップ結合において、[[コネキシン]]ファミリータンパク質との結合が報告されている<ref name=ref9><pubmed>9707407</pubmed></ref>。これらの細胞間結合部位において、ZO-1は細胞膜側で細胞間結合を構成するタンパク質群と、[[wikipedia:ja:細胞質|細胞質]]側で細胞骨格成分と結合する。密着結合形成において、ZO-1はZO-2とともに[[クローディン]]を細胞膜へ集積させる役割をもつ<ref name=ref30><pubmed>16923393</pubmed></ref>。
 ZOファミリーの中で、組織発現に関する報告が最も多いのがZO-1である。ほとんどの上皮組織と血管に発現が見られる。中枢神経系においては、発生期の終脳・間脳・中脳・後脳・脊髄およびその髄膜、末梢では後根神経節などに発現している。ZO-2は、下顎臼歯間充織や女性生殖器を構成する上皮組織、泌尿器系の上皮組織などで発現が報告されている。また、中枢神経系では、発生期の後脳や脊髄で発現が確認されている。ZO-3は主に口腔上皮や下顎臼歯間充織、生殖器・泌尿器系組織の上皮で発現が確認されている<ref>[http://www.informatics.jax.org/ Mouse Genome Informatics]</ref>。


===神経組織における発現と機能===
===神経組織における発現と機能===
====神経系形成初期====
====神経系形成初期====
 発生期の[[神経上皮]]では、[[脳室]]面が頂端(apical)側となる。ZO-1は神経系形成初期に[[神経板]]の脳室面において発現が見られる。神経板ではZO-1は[[オクルディン]]と結合し、機能的な密着結合を形成している。[[神経管]]閉鎖時には脳室面におけるオクルディンの発現が消失するが、ZO-1の発現は維持される<ref name=ref1><pubmed>8954735</pubmed></ref>。脳室面では、接着結合の構成タンパク質である[[N-カドヘリン]]<ref name=ref14><pubmed>3515198</pubmed></ref>が発現してくる。
 発生期の[[神経上皮]]では、[[脳室]]面が頂端(apical)側となる。神経系形成初期の脳室面ではZO-1の発現が見られる。神経管が形成される前の[[神経板]]期ではZO-1は[[オクルディン]]と結合し、機能的な密着結合を形成している。[[神経管]]閉鎖時には脳室面におけるオクルディンの発現が消失し、その後、接着結合の構成タンパク質であるN-カドヘリン<ref name=ref14><pubmed>3515198</pubmed></ref>が発現してくる。このとき、脳室面でのZO-1の発現が維持される<ref name=ref1><pubmed>8954735</pubmed></ref>ことから、ZO-1は神経前駆細胞間の接着結合の維持にも関わると考えられる。


====神経発生期====
====神経発生期====
 神経管閉鎖後の神経上皮組織では、[[神経前駆細胞]]から神経細胞が産生されるようになる。このとき、ZO-1は脳室面に発現が見られ<ref name=ref21><pubmed>17222817</pubmed></ref>、細胞レベルでは[[神経前駆細胞]]のapical processに発現している。神経前駆細胞が分裂するとき、ZO-1陽性のapical processが2つの娘細胞に分配される。apical processとbasal processを受け継いだ娘細胞は、[[自己複製能]]をもつ神経前駆細胞となる。一方で、apical processのみ受け継いだ娘細胞は、神経細胞もしくはbasal progenitorとなって[[SVZ]]で分裂し、2つの神経細胞を産生する<ref name=ref22><pubmed>18084280</pubmed></ref>。したがって、ZO-1は、神経前駆細胞のapical-basalの極性形成に寄与すると考えられる。
 神経管閉鎖後の神経上皮組織では、[[神経前駆細胞]]から神経細胞が産生されるようになる。この時期には、脳室面においてZO-1の発現が観察される<ref name=ref21><pubmed>17222817</pubmed></ref>。細胞レベルでは[[神経前駆細胞]]のapical processに発現している。神経前駆細胞が分裂するとき、ZO-1陽性のapical processが2つの娘細胞に分配される。apical processとbasal processを受け継いだ娘細胞は、[[自己複製能]]をもつ神経前駆細胞となる。一方で、apical processのみ受け継いだ娘細胞は、神経細胞もしくはbasal progenitorとなって[[SVZ]]で分裂し、2つの神経細胞を産生する<ref name=ref22><pubmed>18084280</pubmed></ref>。したがって、ZO-1は、神経前駆細胞のapical-basalの極性形成に寄与すると考えられる。


====グリア細胞====
====グリア細胞====
 [[アストロサイト]]や[[オリゴデンドロサイト]]において、ZO-1は[[ギャップ結合]]に局在が見られる<ref name=ref17><pubmed>12717711</pubmed></ref> <ref name=ref27><pubmed>16045494</pubmed></ref> <ref name=ref15><pubmed>1539634</pubmed></ref> <ref name=ref24><pubmed>15183511</pubmed></ref>。ギャップ結合では、コネクシンファミリーに属するタンパク質(Cx-)と結合する<ref name=ref8><pubmed>15094344</pubmed></ref> 。アストロサイトのギャップ結合では、ZO-1は[[Cx30]]、[[Cx43]]と結合する<ref name=ref9 /> <ref name=ref27 />。オリゴデンドロサイトのギャップ結合では、ZO-1はコネクシン[[Cx47]]と結合する<ref name=ref24 />。しかし、ギャップ結合形成におけるZO-1の役割は明らかになっていない。ZO-1がコネクシンの[[細胞内膜輸送]]に関与し、ギャップ結合のターンオーバーを担うという報告もあるが、まだ検証の余地を残している<ref name=ref23><pubmed>12149451</pubmed></ref> <ref name=ref7><pubmed>11964472</pubmed></ref> <ref name=ref16><pubmed>14681018</pubmed></ref>。
 [[アストロサイト]]や[[オリゴデンドロサイト]]はギャップ結合を介した細胞間コミュニケーションを行う。この領域において、ZO-1の発現が報告されている<ref name=ref17><pubmed>12717711</pubmed></ref> <ref name=ref27><pubmed>16045494</pubmed></ref> <ref name=ref15><pubmed>1539634</pubmed></ref> <ref name=ref24><pubmed>15183511</pubmed></ref>。ギャップ結合において、ZO-1はコネクシンファミリーに属するタンパク質(Cx-)と結合する<ref name=ref8><pubmed>15094344</pubmed></ref>。アストロサイト側のギャップ結合では、ZO-1は[[Cx30]]、[[Cx43]]と結合する<ref name=ref9 /> <ref name=ref27 />。オリゴデンドロサイト側のギャップ結合では、ZO-1はコネクシン[[Cx47]]と結合する<ref name=ref24 />。しかし、ギャップ結合形成におけるZO-1の役割は明らかになっていない。ZO-1がコネクシンの[[細胞内膜輸送]]に関与し、ギャップ結合のターンオーバーを担うという報告もあるが、まだ検証の余地を残している<ref name=ref23><pubmed>12149451</pubmed></ref> <ref name=ref7><pubmed>11964472</pubmed></ref> <ref name=ref16><pubmed>14681018</pubmed></ref>。


====血液脳関門====
====血液脳関門====
 [[血液脳関門]]([[Blood-Brain Barrier|Blood-brain barrier]];[[BBB]])は、[[血管内皮細胞]](endothelial cell)、アストロサイト(astrocyte) 、[[周皮細胞]](pericyte)から構成される。最も内腔に位置する血管内皮細胞同士は密着結合で強固につながっている<ref name=ref2><pubmed>15207256</pubmed></ref>。この構造により、不要な物質や薬物、病原体の中枢神経系への進入を防いでいる。BBBにおける密着結合にはオクルディン、[[クローディン-1]]および[[クローディン-5]]が局在する<ref name=ref26><pubmed>10508865</pubmed></ref> <ref name=ref25><pubmed>10965803</pubmed></ref>。ZO-1は細胞質側からこれらに結合し、密着結合を支えている。また、ZO-1は[[アクチン]]とも結合し、内皮細胞の形態保持に関わっている<ref name=ref13 />。
 [[血液脳関門]]([[Blood-Brain Barrier|Blood-brain barrier]];[[BBB]])は、[[血管内皮細胞]](endothelial cell)、アストロサイト(astrocyte) 、[[周皮細胞]](pericyte)から構成される。最も内腔に位置する血管内皮細胞同士は密着結合で強固につながっている<ref name=ref2><pubmed>15207256</pubmed></ref>。この構造は、不要な物質や薬物、病原体の中枢神経系への進入を防ぐために重要である。BBBにおける密着結合にはオクルディン、[[クローディン-1]]および[[クローディン-5]]が局在する<ref name=ref26><pubmed>10508865</pubmed></ref> <ref name=ref25><pubmed>10965803</pubmed></ref>。ZO-1は細胞質側からこれらの膜貫通型タンパク質に結合する。さらに、ZO-2およびZO-3がZO-1に結合することで、強固な結合構造を保っている。また、ZOファミリータンパク質は、細胞質側で[[アクチン]]と結合し、内皮細胞の形態保持に関わっている<ref name=ref13 />。


====脈絡叢====
====脈絡叢====
 [[脈絡叢]]は一層の上皮細胞からなる。[[側脳室]]、[[第3脳室]]、[[第4脳室]]に存在し、[[脳脊髄液]](CSF)を産生・[[分泌]]する。頂端膜側は脳脊[[髄液]]に接し、[[基底膜]]側で血管に接している。脈絡叢の頂端膜側には密着結合が存在し、[[血液脳脊髄液関門]](blood-CSF barrier)を形成する。密着結合の細胞質側でZO-1はクローディン-1、[[クローディン-2|2]]、[[クローディン-11|11]]およびオクルディンと結合し<ref name=ref31><pubmed>11427304</pubmed></ref>、血液-脳脊髄液間の物質の移動を制御することで脳の恒常性を維持している。
 [[脈絡叢]]は一層の上皮細胞からなる。[[側脳室]]、[[第3脳室]]、[[第4脳室]]に存在し、[[脳脊髄液]](CSF)を産生・[[分泌]]する。頂端膜側は脳脊[[髄液]]に接し、[[基底膜]]側で血管に接している。脈絡叢の頂端膜側には密着結合が存在し、[[血液脳脊髄液関門]](blood-CSF barrier)を形成する。脈絡叢を構成する上皮細胞間の密着接合部位では、ZO-1の発現が見られる。密着結合の細胞質側でZO-1はクローディン-1、[[クローディン-2|2]]、[[クローディン-11|11]]およびオクルディンと結合し<ref name=ref31><pubmed>11427304</pubmed></ref>、血液-脳脊髄液間の物質の移動を制御することで脳の恒常性を維持している。


==関連項目==
==関連項目==

2021年12月7日 (火) 09:37時点における最新版

岩下 美里、*小曽戸 陽一
Korea Brain Research Institute(韓国)Mechanoneuroscience Lab
DOI:10.14931/bsd.7030 原稿受付日:2016年3月21日 原稿完成日:2016年4月14日
担当編集委員:大隅 典子(東北大学 大学院医学系研究科 附属創生応用医学研究センター 脳神経科学コアセンター 発生発達神経科学分野)
*:責任著者

名称の由来:Zonula occludent family

同義語:tight junction protein

 ZOファミリータンパク質はタイトジャンクションを構成する主要な分子である。細胞や組織のアピカル側に局在し、細胞極性形成に関わると考えられ ている。また、タイトジャンクションだけでなく、アドヘレンスジャンクションやギャップジャンクションにも局在が見られることから、広く細胞間結合構造の 維持に関与する分子であると考えられる。近年では、細胞内シグナル伝達分子や転写調節因子として働き、細胞増殖を調節するという報告もなされている。脳神 経系では、発生期の神経上皮組織において神経前駆細胞の極性形成に関わる。また、ギャップ結合を介したグリア細胞同士の細胞間コミュニケーションへの関与 も示唆されている。一方、血液脳関門や血液脳脊髄液関門などの組織と体液の境界領域において、様々な物質の透過を調節するバリアとして機能し、脳神経系の 恒常性の維持に寄与している。

Tight junction protein 1
ファイル:Protein TJP1 PDB 2h2b.png
PDB rendering based on 2h2b.
Identifiers
Symbols TJP1; ZO-1
External IDs OMIM601009 MGI98759 HomoloGene2445 GeneCards: TJP1 Gene
RNA expression pattern
PBB GE TJP1 202011 at tn.png
PBB GE TJP1 214168 s at tn.png
More reference expression data
Orthologs
Species Human Mouse
Entrez 7082 21872
Ensembl ENSG00000104067 ENSMUSG00000030516
UniProt Q07157 P39447
RefSeq (mRNA) NM_001301025 NM_001163574
RefSeq (protein) NP_001287954 NP_001157046
Location (UCSC) Chr 15:
29.7 – 29.97 Mb
Chr 7:
65.3 – 65.37 Mb
PubMed search [1] [2]
Tight junction protein 2
ファイル:Protein TJP2 PDB 2csj.png
PDB rendering based on 2csj.
Identifiers
Symbols TJP2; C9DUPq21.11; DFNA51; DUP9q21.11; PFIC4; X104; ZO2
External IDs OMIM607709 MGI1341872 HomoloGene3541 GeneCards: TJP2 Gene
RNA expression pattern
PBB GE TJP2 202085 at tn.png
More reference expression data
Orthologs
Species Human Mouse
Entrez 9414 21873
Ensembl ENSG00000119139 ENSMUSG00000024812
UniProt Q9UDY2 Q9Z0U1
RefSeq (mRNA) NM_001170414 NM_001198985
RefSeq (protein) NP_001163885 NP_001185914
Location (UCSC) Chr 9:
69.12 – 69.26 Mb
Chr 19:
24.09 – 24.23 Mb
PubMed search [3] [4]
Tight junction protein 3
Identifiers
Symbols TJP3; ZO-3; ZO3
External IDs OMIM612689 MGI1351650 HomoloGene8458 GeneCards: TJP3 Gene
RNA expression pattern
PBB GE TJP3 213412 at tn.png
More reference expression data
Orthologs
Species Human Mouse
Entrez 27134 27375
Ensembl ENSG00000105289 ENSMUSG00000034917
UniProt O95049 E9QL54
RefSeq (mRNA) NM_001267560 NM_001282095
RefSeq (protein) NP_001254489 NP_001269024
Location (UCSC) Chr 19:
3.71 – 3.75 Mb
Chr 10:
81.27 – 81.29 Mb
PubMed search [5] [6]

ZOファミリーとは

 ZO ファミリータンパク質は、上皮組織の密着結合に含まれるタンパク質として同定された表在性膜タンパク質である[1] [2]多細胞生物上皮組織では、上皮細胞が互いに接着したシート状構造を呈する。上皮シート構造の形成・維持には、頂端側に存在する密着結合接着結合・デスモソーム結合といった、細胞間結合構造が重要な役割を果たしている。ZOファミリータンパク質は、細胞間結合構造の裏打ちタンパクとして働き、主に(1)細胞間結合構造の形成と維持、(2)物質透過の制御、(3)細胞極性形成などの役割を担っている。近年では、ZOタンパク質が核内に移動し、細胞内シグナル伝達や転写調節を担うことも報告されている[3]

構造ならびにファミリー

図1.ZOファミリータンパク質の構造
N末端側にPDZドメイン(1、2、3の数字で示す)、SH3ドメイン、GUK(GK)ドメインが存在する。 ZO-1、ZO-2のC末端側およびZO-3のN末端側にはプロリンリッチな領域(P)が存在する。ZO-1とZO-2のC末端側には選択的スプライシング部位(α、β、γ)が存在する。+、-はそれぞれ塩基性領域、酸性領域を表す。▼は核局在シグナル領域、▽は核外移行シグナル領域を示す[1]を一部改変。

 ZOファミリータンパク質(図1)は、membrane-associated guanylate kinase(MAGUK)ファミリーに分類される。分子量220kDaのZO-1[2] [4]、160kDaのZO-2[5] [6]、130kDaの ZO-3[7]の3種類がある。これらに共通の構造として、3個のPDZドメイン、1個のSrc homology 3(SH3)ドメイン、1個のグアニル酸キナーゼ (GUKまたはGK)ドメインが挙げられる。また、プロリンリッチ領域が、ZO-1、ZO-2ではカルボキシル末端側、ZO-3では第2PDZドメインと第3PDZドメインの間に存在する[1]。また、ZO-1およびZO-3は2つの核局在シグナル領域を、ZO-2は核局在シグナル領域と核外移行シグナル領域をひとつずつ持っている[1] [8]

 3種のZOタンパク質を区別するのはC末端領域の構造である(図1)。ZO-1とZO-2のC末領域には選択的スプライシング部位があり、多様なスプライスバリアントが存在する[9] [10]。ZO-1には3カ所、ZO-2には2カ所が報告されているが、ZO-3には選択的スプライシング部位がない[1]。 スプライスバリアントの多様性が、組織や細胞における発現の違いに反映されると考えられる[1]

結合タンパク質

 ZOファミリータンパク質の主な結合パートナーは、膜タンパク質、細胞骨格カドヘリンと複合体を形成するタンパク質群(カテニン)、およびZOファミリータンパク質である。細胞膜側で膜タンパク質と、細胞質側で細胞骨格、カテニン、ZOファミリーと結合する。

 密着結合にはクローディンオクルディンといった膜貫通型タンパク質が存在する[11]。各ZOファミリータンパク質は、第一PDZドメインを介してクローディンと結合する。オクルディンとの結合部位は、ZO-1ではGUKドメイン、ZO-2では第一PDZドメインからGUKドメインまでの、C末端を除いた領域である。ギャップ結合には、膜貫通型タンパクであるコネクシンファミリータンパク質が存在する。ZOファミリータンパク質は、PDZドメインを介してこれらと結合する[12]

 一方、密着結合部位の細胞質側では、ZOファミリータンパク質はC末端側を介して細胞骨格であるF-アクチンと結合する[9] [10]。接着結合部位では、ZO-1はGUKドメインを介してα-カテニンと、ZO-2はC末端を除く部位でα-カテニンと、ZO-3はC末端側でP120カテニンと結合する[4] [13]。また、ZOタンパク間の結合は、PDZドメインを介して行われる。

組織発現

 ZOファミリーの発現は主に上皮組織や間葉系組織で観察される。ZO-1の組織発現は、受精後から生体まで、幅広く報告されている。一方、ZO-2およびZO-3の組織発現については、胎生期から生後直後の時期に関する報告がほとんどである。

 ZOファミリーの中で、組織発現に関する報告が最も多いのがZO-1である。ほとんどの上皮組織と血管に発現が見られる。中枢神経系においては、発生期の終脳・間脳・中脳・後脳・脊髄およびその髄膜、末梢では後根神経節などに発現している。ZO-2は、下顎臼歯間充織や女性生殖器を構成する上皮組織、泌尿器系の上皮組織などで発現が報告されている。また、中枢神経系では、発生期の後脳や脊髄で発現が確認されている。ZO-3は主に口腔上皮や下顎臼歯間充織、生殖器・泌尿器系組織の上皮で発現が確認されている[14]

神経組織における発現と機能

神経系形成初期

 発生期の神経上皮では、脳室面が頂端(apical)側となる。神経系形成初期の脳室面ではZO-1の発現が見られる。神経管が形成される前の神経板期ではZO-1はオクルディンと結合し、機能的な密着結合を形成している。神経管閉鎖時には脳室面におけるオクルディンの発現が消失し、その後、接着結合の構成タンパク質であるN-カドヘリン[15]が発現してくる。このとき、脳室面でのZO-1の発現が維持される[16]ことから、ZO-1は神経前駆細胞間の接着結合の維持にも関わると考えられる。

神経発生期

 神経管閉鎖後の神経上皮組織では、神経前駆細胞から神経細胞が産生されるようになる。この時期には、脳室面においてZO-1の発現が観察される[17]。細胞レベルでは神経前駆細胞のapical processに発現している。神経前駆細胞が分裂するとき、ZO-1陽性のapical processが2つの娘細胞に分配される。apical processとbasal processを受け継いだ娘細胞は、自己複製能をもつ神経前駆細胞となる。一方で、apical processのみ受け継いだ娘細胞は、神経細胞もしくはbasal progenitorとなってSVZで分裂し、2つの神経細胞を産生する[18]。したがって、ZO-1は、神経前駆細胞のapical-basalの極性形成に寄与すると考えられる。

グリア細胞

 アストロサイトオリゴデンドロサイトはギャップ結合を介した細胞間コミュニケーションを行う。この領域において、ZO-1の発現が報告されている[19] [20] [21] [22]。ギャップ結合において、ZO-1はコネクシンファミリーに属するタンパク質(Cx-)と結合する[23]。アストロサイト側のギャップ結合では、ZO-1はCx30Cx43と結合する[12] [20]。オリゴデンドロサイト側のギャップ結合では、ZO-1はコネクシンCx47と結合する[22]。しかし、ギャップ結合形成におけるZO-1の役割は明らかになっていない。ZO-1がコネクシンの細胞内膜輸送に関与し、ギャップ結合のターンオーバーを担うという報告もあるが、まだ検証の余地を残している[24] [25] [26]

血液脳関門

 血液脳関門Blood-brain barrier;BBB)は、血管内皮細胞(endothelial cell)、アストロサイト(astrocyte) 、周皮細胞(pericyte)から構成される。最も内腔に位置する血管内皮細胞同士は密着結合で強固につながっている[27]。この構造は、不要な物質や薬物、病原体の中枢神経系への進入を防ぐために重要である。BBBにおける密着結合にはオクルディン、クローディン-1およびクローディン-5が局在する[28] [29]。ZO-1は細胞質側からこれらの膜貫通型タンパク質に結合する。さらに、ZO-2およびZO-3がZO-1に結合することで、強固な結合構造を保っている。また、ZOファミリータンパク質は、細胞質側でアクチンと結合し、内皮細胞の形態保持に関わっている[7]

脈絡叢

 脈絡叢は一層の上皮細胞からなる。側脳室第3脳室第4脳室に存在し、脳脊髄液(CSF)を産生・分泌する。頂端膜側は脳脊髄液に接し、基底膜側で血管に接している。脈絡叢の頂端膜側には密着結合が存在し、血液脳脊髄液関門(blood-CSF barrier)を形成する。脈絡叢を構成する上皮細胞間の密着接合部位では、ZO-1の発現が見られる。密着結合の細胞質側でZO-1はクローディン-1、211およびオクルディンと結合し[30]、血液-脳脊髄液間の物質の移動を制御することで脳の恒常性を維持している。

関連項目

参考文献

  1. 1.0 1.1 1.2 1.3 1.4 1.5 González-Mariscal, L., Betanzos, A., & Avila-Flores, A. (2000).
    MAGUK proteins: structure and role in the tight junction. Seminars in cell & developmental biology, 11(4), 315-24. [PubMed:10966866] [WorldCat] [DOI]
  2. 2.0 2.1 Stevenson, B.R., Siliciano, J.D., Mooseker, M.S., & Goodenough, D.A. (1986).
    Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. The Journal of cell biology, 103(3), 755-66. [PubMed:3528172] [PMC] [WorldCat] [DOI]
  3. Bauer, H., Zweimueller-Mayer, J., Steinbacher, P., Lametschwandtner, A., & Bauer, H.C. (2010).
    The dual role of zonula occludens (ZO) proteins. Journal of biomedicine & biotechnology, 2010, 402593. [PubMed:20224657] [PMC] [WorldCat] [DOI]
  4. 4.0 4.1 Itoh, M., Nagafuchi, A., Yonemura, S., Kitani-Yasuda, T., Tsukita, S., & Tsukita, S. (1993).
    The 220-kD protein colocalizing with cadherins in non-epithelial cells is identical to ZO-1, a tight junction-associated protein in epithelial cells: cDNA cloning and immunoelectron microscopy. The Journal of cell biology, 121(3), 491-502. [PubMed:8486731] [PMC] [WorldCat] [DOI]
  5. Gumbiner, B., Lowenkopf, T., & Apatira, D. (1991).
    Identification of a 160-kDa polypeptide that binds to the tight junction protein ZO-1. Proceedings of the National Academy of Sciences of the United States of America, 88(8), 3460-4. [PubMed:2014265] [PMC] [WorldCat] [DOI]
  6. Jesaitis, L.A., & Goodenough, D.A. (1994).
    Molecular characterization and tissue distribution of ZO-2, a tight junction protein homologous to ZO-1 and the Drosophila discs-large tumor suppressor protein. The Journal of cell biology, 124(6), 949-61. [PubMed:8132716] [PMC] [WorldCat] [DOI]
  7. 7.0 7.1 Haskins, J., Gu, L., Wittchen, E.S., Hibbard, J., & Stevenson, B.R. (1998).
    ZO-3, a novel member of the MAGUK protein family found at the tight junction, interacts with ZO-1 and occludin. The Journal of cell biology, 141(1), 199-208. [PubMed:9531559] [PMC] [WorldCat] [DOI]
  8. González-Mariscal, L., Islas, S., Contreras, R.G., García-Villegas, M.R., Betanzos, A., Vega, J., ..., & Valdés, J. (1999).
    Molecular characterization of the tight junction protein ZO-1 in MDCK cells. Experimental cell research, 248(1), 97-109. [PubMed:10094817] [WorldCat] [DOI]
  9. 9.0 9.1 Fanning, A.S., Jameson, B.J., Jesaitis, L.A., & Anderson, J.M. (1998).
    The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. The Journal of biological chemistry, 273(45), 29745-53. [PubMed:9792688] [WorldCat] [DOI]
  10. 10.0 10.1 Itoh, M., Nagafuchi, A., Moroi, S., & Tsukita, S. (1997).
    Involvement of ZO-1 in cadherin-based cell adhesion through its direct binding to alpha catenin and actin filaments. The Journal of cell biology, 138(1), 181-92. [PubMed:9214391] [PMC] [WorldCat] [DOI]
  11. Umeda, K., Ikenouchi, J., Katahira-Tayama, S., Furuse, K., Sasaki, H., Nakayama, M., ..., & Tsukita, S. (2006).
    ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell, 126(4), 741-54. [PubMed:16923393] [WorldCat] [DOI]
  12. 12.0 12.1 Giepmans, B.N., & Moolenaar, W.H. (1998).
    The gap junction protein connexin43 interacts with the second PDZ domain of the zona occludens-1 protein. Current biology : CB, 8(16), 931-4. [PubMed:9707407] [WorldCat] [DOI]
  13. Rajasekaran, A.K., Hojo, M., Huima, T., & Rodriguez-Boulan, E. (1996).
    Catenins and zonula occludens-1 form a complex during early stages in the assembly of tight junctions. The Journal of cell biology, 132(3), 451-63. [PubMed:8636221] [PMC] [WorldCat] [DOI]
  14. Mouse Genome Informatics
  15. Hatta, K., & Takeichi, M. (1986).
    Expression of N-cadherin adhesion molecules associated with early morphogenetic events in chick development. Nature, 320(6061), 447-9. [PubMed:3515198] [WorldCat] [DOI]
  16. Aaku-Saraste, E., Hellwig, A., & Huttner, W.B. (1996).
    Loss of occludin and functional tight junctions, but not ZO-1, during neural tube closure--remodeling of the neuroepithelium prior to neurogenesis. Developmental biology, 180(2), 664-79. [PubMed:8954735] [WorldCat] [DOI]
  17. Kadowaki, M., Nakamura, S., Machon, O., Krauss, S., Radice, G.L., & Takeichi, M. (2007).
    N-cadherin mediates cortical organization in the mouse brain. Developmental biology, 304(1), 22-33. [PubMed:17222817] [WorldCat] [DOI]
  18. Konno, D., Shioi, G., Shitamukai, A., Mori, A., Kiyonari, H., Miyata, T., & Matsuzaki, F. (2008).
    Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis. Nature cell biology, 10(1), 93-101. [PubMed:18084280] [WorldCat] [DOI]
  19. Inagaki, M., Irie, K., Deguchi-Tawarada, M., Ikeda, W., Ohtsuka, T., Takeuchi, M., & Takai, Y. (2003).
    Nectin-dependent localization of ZO-1 at puncta adhaerentia junctions between the mossy fiber terminals and the dendrites of the pyramidal cells in the CA3 area of adult mouse hippocampus. The Journal of comparative neurology, 460(4), 514-24. [PubMed:12717711] [WorldCat] [DOI]
  20. 20.0 20.1 Penes, M.C., Li, X., & Nagy, J.I. (2005).
    Expression of zonula occludens-1 (ZO-1) and the transcription factor ZO-1-associated nucleic acid-binding protein (ZONAB)-MsY3 in glial cells and colocalization at oligodendrocyte and astrocyte gap junctions in mouse brain. The European journal of neuroscience, 22(2), 404-18. [PubMed:16045494] [WorldCat] [DOI]
  21. Howarth, A.G., Hughes, M.R., & Stevenson, B.R. (1992).
    Detection of the tight junction-associated protein ZO-1 in astrocytes and other nonepithelial cell types. The American journal of physiology, 262(2 Pt 1), C461-9. [PubMed:1539634] [WorldCat] [DOI]
  22. 22.0 22.1 Li, X., Ionescu, A.V., Lynn, B.D., Lu, S., Kamasawa, N., Morita, M., ..., & Nagy, J.I. (2004).
    Connexin47, connexin29 and connexin32 co-expression in oligodendrocytes and Cx47 association with zonula occludens-1 (ZO-1) in mouse brain. Neuroscience, 126(3), 611-30. [PubMed:15183511] [PMC] [WorldCat] [DOI]
  23. Giepmans, B.N. (2004).
    Gap junctions and connexin-interacting proteins. Cardiovascular research, 62(2), 233-45. [PubMed:15094344] [WorldCat] [DOI]
  24. Lauf, U., Giepmans, B.N., Lopez, P., Braconnot, S., Chen, S.C., & Falk, M.M. (2002).
    Dynamic trafficking and delivery of connexons to the plasma membrane and accretion to gap junctions in living cells. Proceedings of the National Academy of Sciences of the United States of America, 99(16), 10446-51. [PubMed:12149451] [PMC] [WorldCat] [DOI]
  25. Gaietta, G., Deerinck, T.J., Adams, S.R., Bouwer, J., Tour, O., Laird, D.W., ..., & Ellisman, M.H. (2002).
    Multicolor and electron microscopic imaging of connexin trafficking. Science (New York, N.Y.), 296(5567), 503-7. [PubMed:11964472] [WorldCat] [DOI]
  26. Hunter, A.W., Jourdan, J., & Gourdie, R.G. (2003).
    Fusion of GFP to the carboxyl terminus of connexin43 increases gap junction size in HeLa cells. Cell communication & adhesion, 10(4-6), 211-4. [PubMed:14681018] [WorldCat]
  27. Ballabh, P., Braun, A., & Nedergaard, M. (2004).
    The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiology of disease, 16(1), 1-13. [PubMed:15207256] [WorldCat] [DOI]
  28. Morita, K., Sasaki, H., Furuse, M., & Tsukita, S. (1999).
    Endothelial claudin: claudin-5/TMVCF constitutes tight junction strands in endothelial cells. The Journal of cell biology, 147(1), 185-94. [PubMed:10508865] [PMC] [WorldCat] [DOI]
  29. Liebner, S., Fischmann, A., Rascher, G., Duffner, F., Grote, E.H., Kalbacher, H., & Wolburg, H. (2000).
    Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta neuropathologica, 100(3), 323-31. [PubMed:10965803] [WorldCat] [DOI]
  30. Wolburg, H., Wolburg-Buchholz, K., Liebner, S., & Engelhardt, B. (2001).
    Claudin-1, claudin-2 and claudin-11 are present in tight junctions of choroid plexus epithelium of the mouse. Neuroscience letters, 307(2), 77-80. [PubMed:11427304] [WorldCat] [DOI]