「トポグラフィックマッピング」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
11行目: 11行目:
<topographic mappingのロジックとその分子メカニズム—歴史的ポイント>  
<topographic mappingのロジックとその分子メカニズム—歴史的ポイント>  


 Roger Sperryは彼の一連の視覚系のマニピュレーションの実験の結果から1963年のchemoaffinity theoryの中で、投射する軸索と標的の細胞に分子のタグがついていて、その間の特異的相互作用によって神経細胞間の結合が決定されトポグラフィックマップの形成に関与すると提唱した。また、こういった分子のタグは軸索と標的の両方で相補的な濃度勾配を形成していて、それでコネクションの形成される位置が決定されるのではないかと推測した<ref><pubmed>14077501</pubmed></ref>。その流れを汲んで、その後視覚系を中心にトポグラフィックマッピングのメカニズムを追求する努力がなされた。ニワトリの眼において耳側と鼻側の網膜神経節細胞はそれぞれ視蓋の前側と後側に軸索を送り、眼の中の耳鼻軸に沿った位置情報は視蓋の中で前後軸として保存される。これは眼の中で網膜神経節細胞に耳側と鼻側に軸に沿った分子の濃度勾配があり、それに対応する分子の濃度勾配が標的である視蓋の前後軸にもあり、その相互作用によって、それぞれの網膜神経節細胞の軸索が視蓋で停止する場所が決定されると考えられた。Friedrich(パパ)Bonhoefferのグループは生化学的に視蓋での物質的基盤を明らかにすべく以下の様な実験を行った。彼らは、もし、視蓋に前後軸で濃度勾配を呈して発現している物質があってそれが耳側と鼻側の網膜神経節細胞の軸索のターゲッティングに重要であるならば、視蓋の前側と後側から調整した膜画分に対する耳側と鼻側の網膜神経節細胞の軸索の反応が変わるであろうと考え、これらの膜画分をインビトロでの基質としてストライプ状に配置した(ストライプアッセイ)。その上で網膜の神経節細胞を培養すると、耳側の細胞の軸索は前側から調整した膜画分の上を好んで成長するのに対して、鼻側の細胞の軸索は前側と後側からの画分で差を示さない事、そして、耳側の軸索は特に前側の膜画分を好むわけではなく、実は後側の膜画分を避ける事が示された。この事は視蓋の後側に高く前側に低く発現されている物質があり、それが耳側で強く発現し鼻側で弱く発現する分子によって認識される事によって網膜神経節細胞の軸索の視蓋内での位置が決まるという事を示唆する(図1)<ref><pubmed>3503693</pubmed></ref><ref><pubmed>3503703</pubmed></ref>。この流れがEph-Ephrinの発見につながっていった事はご承知の通りである(直接の発見は実は偶然であったのだが)。これについてはその項を参照いただきたい。  
 Roger Sperryは彼の一連の視覚系のマニピュレーションの実験の結果から1963年のchemoaffinity theoryの中で、投射する軸索と標的の細胞に分子のタグがついていて、その間の特異的相互作用によって神経細胞間の結合が決定されトポグラフィックマップの形成に関与すると提唱した。また、こういった分子のタグは軸索と標的の両方で相補的な濃度勾配を形成していて、それでコネクションの形成される位置が決定されるのではないかと推測した<ref><pubmed>14077501</pubmed></ref>。その流れを汲んで、その後視覚系を中心にトポグラフィックマッピングのメカニズムを追求する努力がなされた。ニワトリの眼において耳側と鼻側の網膜神経節細胞はそれぞれ視蓋の前側と後側に軸索を送り、眼の中の耳鼻軸に沿った位置情報は視蓋の中で前後軸として保存される(図1)。これは眼の中で網膜神経節細胞に耳側と鼻側に軸に沿った分子の濃度勾配があり、それに対応する分子の濃度勾配が標的である視蓋の前後軸にもあり、その相互作用によって、それぞれの網膜神経節細胞の軸索が視蓋で停止する場所が決定されると考えられた。Friedrich(パパ)Bonhoefferのグループは生化学的に視蓋での物質的基盤を明らかにすべく以下の様な実験を行った。彼らは、もし、視蓋に前後軸で濃度勾配を呈して発現している物質があってそれが耳側と鼻側の網膜神経節細胞の軸索のターゲッティングに重要であるならば、視蓋の前側と後側から調整した膜画分に対する耳側と鼻側の網膜神経節細胞の軸索の反応が変わるであろうと考え、これらの膜画分をインビトロでの基質としてストライプ状に配置した(ストライプアッセイ)。その上で網膜の神経節細胞を培養すると、耳側の細胞の軸索は前側から調整した膜画分の上を好んで成長するのに対して、鼻側の細胞の軸索は前側と後側からの画分で差を示さない事、そして、耳側の軸索は特に前側の膜画分を好むわけではなく、実は後側の膜画分を避ける事が示された。この事は視蓋の後側に高く前側に低く発現されている物質があり、それが耳側で強く発現し鼻側で弱く発現する分子によって認識される事によって網膜神経節細胞の軸索の視蓋内での位置が決まるという事を示唆する(図1)<ref><pubmed>3503693</pubmed></ref><ref><pubmed>3503703</pubmed></ref>。この流れがEph-Ephrinの発見につながっていった事はご承知の通りである(直接の発見は実は偶然であったのだが)。これについてはその項を参照いただきたい。  


<各論>  
<各論>  
25行目: 25行目:
<br>  
<br>  


 嗅覚系においてもトポグラフィックマッピングが行われることが知られているが、坂野らのグループによる精力的な研究によりその詳細な分子メカニズムが明らかにされてきている。匂いはオルファクトリーレセプターで感知されるが、一つの嗅上皮細胞は一種類のオルファクトリーレセプターを発現している。そして同じオルファクトリーレセプターを発現する細胞からの情報は嗅球の中の同じ糸球体に収束する必要がある。嗅球の中での嗅上皮細胞の軸索の配置は前後軸及び内側外側の軸で決定されているが、内側外側の軸での配列は嗅上皮内での配置によって決定される。前後軸に関してはどのオルファクトリーレセプターが発現されているかによって産生されるcAMPの量が変わり、これによってSema3A/neuropilin1のカウンターバランスを示す濃度勾配が嗅上皮細胞の軸索内に発生し、これによって標的にたどり着く前にアクソンがソーティングされることによって、前後軸のどこに軸索が到着するかが決定される。内側外側に関しては、まず、嗅上皮内でのrobo2の濃度勾配によってパイオニア軸索の嗅球での配置が決定され、その後、嗅上皮細胞の軸索内でのSema3F/neuropilin2のカウンターバランスを示す濃度勾配によって嗅球内での内側外側の位置が決まる。嗅覚の場合に特徴的なのは、アクソン−アクソンの相互作用が非常に重要な役割を果たしていることである。
 嗅覚系においてもトポグラフィックマッピングが行われることが知られているが、坂野らのグループによる精力的な研究によりその詳細な分子メカニズムが明らかにされてきている。匂いはオルファクトリーレセプターで感知されるが、一つの嗅上皮細胞は一種類のオルファクトリーレセプターを発現している。そして同じオルファクトリーレセプターを発現する細胞からの情報は嗅球の中の同じ糸球体に収束する必要がある。嗅球の中での嗅上皮細胞の軸索の配置は前後軸及び背側腹側の軸で決定されているが、背側腹側の軸での配列は嗅上皮内での配置によって決定される。前後軸に関してはどのオルファクトリーレセプターが発現されているかによって産生されるcAMPの量が変わり、これによってSema3A/neuropilin1のカウンターバランスを示す濃度勾配が嗅上皮細胞の軸索内に発生し、これによって標的にたどり着く前にアクソンがソーティングされることによって、前後軸のどこに軸索が到着するかが決定される。背側腹側に関しては、まず、嗅上皮内でのrobo2の濃度勾配と嗅球内でのslit2の濃度勾配よってパイオニア軸索の嗅球での配置が背側に決定され、その後、嗅上皮細胞の軸索内でのSema3F/neuropilin2のカウンターバランスを示す濃度勾配によって嗅球内での背側腹側の位置が決まる。つまり、後から到着する軸索は先に到着した背側の軸索が発現するSema3Fによってより腹側に配置される(図3)。嗅覚の場合に特徴的なのは、アクソン−アクソンの相互作用が非常に重要な役割を果たしていることである。


 こういった過程で軸索が標的位置に到達しシナプスを形成したあと、嗅覚系でも視覚系と同様に神経活動依存的なリファインメントがおこる(隣同士の糸球体がきっちりとセグレゲートする)。この過程においては神経活動依存的にホモフィリック結合をする細胞接着因子Kirrel2/3と接着依存性の反発因子であるEphA5-EphrinA5がやはり濃度勾配を呈する形で発現し、それによって糸球体が相互にセグレゲートする(図3)<ref><pubmed>21469960</pubmed></ref>。  
 こういった過程で軸索が標的位置に到達しシナプスを形成したあと、嗅覚系でも視覚系と同様に神経活動依存的なリファインメントがおこる(隣同士の糸球体がきっちりとセグレゲートする)。この過程においては神経活動依存的にホモフィリック結合をする細胞接着因子Kirrel2/3と接着依存性の反発因子であるEphA5-EphrinA5がやはり濃度勾配を呈する形で発現し、それによって糸球体が相互にセグレゲートする(図3)<ref><pubmed>21469960</pubmed></ref>。