「ナノボディ」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
14行目: 14行目:
ウサギ、マウスなどに見られる一般的な[[wj:抗体]]は重鎖と軽鎖からなる複合体であり、研究、診断、治療などには、IgG、IgMなどの免疫グロブリンとその誘導体(Fab断片など)が広く用いられている(図1)。最も一般的な抗体分子(免疫グロブリンG, IgG)は、別々の[[wj:可変領域]](Variable region)ドメインを持った重鎖と軽鎖からなるヘテロダイマーが1つの抗原を認識し、重鎖の[[wj:定常領域]](Constant region)ドメインを介したジスルフィド結合で、もう一つの同じ重鎖と軽鎖 のヘテロダイマーと一緒になって、分子量150kDaほどのY字型のヘテロテトラマーとなっている。また目的に応じて、 抗原との結合能を維持した小型抗体分子、例えばFab(1つの軽鎖および半分の重鎖) のようなプロテアーゼ切断断片や、重鎖と軽鎖の可変領域ドメインを組換えDNA技術で人工的に接続することで一本鎖の可変断片とした’’’単鎖抗体’’’(single chain antibody、single chain variable fragment (scFV))がしばしば利用されてきた<ref><pubmed>8114766</pubmed></ref> <ref><pubmed>23908655 </pubmed> </ref>。   
ウサギ、マウスなどに見られる一般的な[[wj:抗体]]は重鎖と軽鎖からなる複合体であり、研究、診断、治療などには、IgG、IgMなどの免疫グロブリンとその誘導体(Fab断片など)が広く用いられている(図1)。最も一般的な抗体分子(免疫グロブリンG, IgG)は、別々の[[wj:可変領域]](Variable region)ドメインを持った重鎖と軽鎖からなるヘテロダイマーが1つの抗原を認識し、重鎖の[[wj:定常領域]](Constant region)ドメインを介したジスルフィド結合で、もう一つの同じ重鎖と軽鎖 のヘテロダイマーと一緒になって、分子量150kDaほどのY字型のヘテロテトラマーとなっている。また目的に応じて、 抗原との結合能を維持した小型抗体分子、例えばFab(1つの軽鎖および半分の重鎖) のようなプロテアーゼ切断断片や、重鎖と軽鎖の可変領域ドメインを組換えDNA技術で人工的に接続することで一本鎖の可変断片とした’’’単鎖抗体’’’(single chain antibody、single chain variable fragment (scFV))がしばしば利用されてきた<ref><pubmed>8114766</pubmed></ref> <ref><pubmed>23908655 </pubmed> </ref>。   


一方、1993年、ヒトコブラクダ(Camelus dromedarius)は、 例外的に軽鎖がない重鎖のみでできた特殊な抗体('''重鎖抗体''' Heavy chain antibodies )も持っていることが、Hamers-Castermanらによって報告された<ref><pubmed>8502296</pubmed></ref><ref name=Muyldermans2013><pubmed>23495938</pubmed></ref>。 これは、現存するラクダ科の動物(ヒトコブラクダ、フタコブラクダ(Camelus bactorianusまたはferus)、リャマ(Lama glama)/グアナコ(Lama guanicoe)、アルパカ(Vicugna pacos)/ビクーニャ(Vicugna vicugna))に共通して見られる抗体である。その後、 軟骨魚(サメ、ギンザメなど)でも類似した重鎖抗体の存在が確認された<ref><pubmed>7877689</pubmed></ref><ref><pubmed>19997068</pubmed></ref>。


一方、1993年、ヒトコブラクダCamelus dromedariusは、 例外的に軽鎖がない重鎖のみでできた特殊な抗体('''重鎖抗体''' Heavy chain antibodies )も持っていることが、Hamers-Castermanらによって報告された<ref><pubmed>8502296</pubmed></ref><ref name=Muyldermans2013><pubmed>23495938</pubmed></ref>。 これは、現存するラクダ科の動物(ヒトコブラクダ、フタコブラクダ、リャマ/グアナコ、アルパカ/ビクーニャ)に共通して見られる抗体である。その後、 軟骨魚(サメ、ギンザメなど)でも類似した重鎖抗体の存在が確認された<ref><pubmed>7877689</pubmed></ref><ref><pubmed>19997068</pubmed></ref>。
サメで見られる重鎖抗体は、'''IgNAR''' (new antigen receptor)と呼ばれ、1つの可変領域のドメイン(vNARと呼ばれる)が抗原と結合することができる。一方、ラクダ科の重鎖抗体では、その1つの可変領域ドメインはVHHと呼ばれる。他のポリペプチドの存在なしで抗原と結合する単鎖抗体であるVHHは、その分子量が通常のIgGの10分の1ほどの12-15kDaであり、nm単位の大きさであることから「ナノボディNanobody」と一般的に呼ばれている<ref name=Muyldermans2013/> <ref name=Arbabi2017><pubmed>29209322</pubmed></ref>。  
 
 
サメで見られる重鎖抗体は、'''IgNAR''' (new antigen receptor)と呼ばれ、1つの可変領域のドメイン(vNARと呼ばれる)が抗原と結合することができる。一方、ラクダ科の重鎖抗体では、その1つの可変領域ドメインはVHHと呼ばれる。他のポリペプチドの存在なしで抗原と結合する単鎖抗体であるVHHは、その分子量が通常のIgGの10分の1ほどの12-15kDaであり、nm単位の大きさであることから「ナノボディNanobody」と一般的に呼ばれている<ref name=Muyldermans2013/> <ref><pubmed>29209322 </pubmed></ref>。  
注:実際は、ベルギーのAblynx社(2018年に、フランスのバイオテクノロジー会社Sanofiの傘下となった)の商標となっている。<ref>http://www.ablynx.com/technology-innovation/intellectual-property/</ref>
注:実際は、ベルギーのAblynx社(2018年に、フランスのバイオテクノロジー会社Sanofiの傘下となった)の商標となっている。<ref>http://www.ablynx.com/technology-innovation/intellectual-property/</ref>


28行目: 26行目:


==ナノボディの構造的な特徴==
==ナノボディの構造的な特徴==
ナノボディは、通常120アミノ酸残基のポリペプチドである。基本的には、典型的な免疫グロブリンの可変領域の配列の構成と類似しており、FR1からFR4というフレームワーク領域(Framework regions)に挟まれて超可変領域である相補性決定領域(Complementary determining regions)と呼ばれる3つのCDR1-3が見られる(図3)。
ナノボディは、通常120アミノ酸残基のポリペプチドである。基本的には、典型的な免疫グロブリンの可変領域の配列の構成と類似しており、FR1からFR4というフレームワーク領域(Framework region)に挟まれて超可変領域である相補性決定領域(Complementary determining region)と呼ばれる3つのCDR1-3が見られる(図3)。
 


しかしながら、通常の免疫グロブリンの可変領域とは異なる特徴が見られ、それがナノボディの長所ともなっている。第1に、通常の免疫グロブリンに比べて、FR2領域に親水性のアミノ酸残基が多く、ナノボディの水溶性の性質や安定性を高めている<ref><pubmed>7831284</pubmed></ref>。第2に、 通常の免疫グロブリンの6つのCDR(重鎖3つ、軽鎖3つ)の代わりに3つのCDRのみで抗原と結合する。その結果、認識に必要な構造([[パラトープ]]paratope)が凸型で小さいので、通常の免疫グロブリンが入り込めないような抗原の構造([[エピトープ]]epitope)を認識できる可能性がある<ref><pubmed>16537393</pubmed></ref>。第3に、通常の抗体より長いCDR1, CDR3ループを持つために、結合の親和性や特異性を高めることが可能となっている。これらの水溶性、構造的なコンパクトさ、そして超可変領域の配列の多様性が、通常の免疫グロブリンの可変領域と違ったナノボディの利点となると考えられる。
しかしながら、通常の免疫グロブリンの可変領域とは異なる特徴が見られ、それがナノボディの長所ともなっている。第1に、通常の免疫グロブリンに比べて、FR2領域に親水性のアミノ酸残基が多く、ナノボディの水溶性の性質や安定性を高めている<ref><pubmed>7831284</pubmed></ref>。第2に、 通常の免疫グロブリンの6つのCDR(重鎖3つ、軽鎖3つ)の代わりに3つのCDRのみで抗原と結合する。その結果、認識に必要な構造([[パラトープ]]paratope)が凸型で小さいので、通常の免疫グロブリンが入り込めないような隠れた抗原の構造([[エピトープ]]epitope)を認識できる可能性がある<ref><pubmed>16537393</pubmed></ref>。第3に、通常の抗体より長いCDR1, CDR3ループを持つために、結合の親和性や特異性を高めることが可能となっている。これらの水溶性、構造的なコンパクトさ、そして超可変領域の配列の多様性が、通常の免疫グロブリンの可変領域と違ったナノボディの特性である。


==既知ナノボディの作製法==
==既知ナノボディの作製法==
1つのナノボディは、120アミノ酸(cDNAとして360bp)ほどなので、クローニングなどに利用するための配列を付加しても500bp未満の長さに収めることができる。したがって、利用したい特定ナノボディのアミノ酸配列がわかっていれば、いくつかの民間会社が提供している長鎖DNAを化学合成するサービスなどを利用することで短期間のうちにcDNA配列が入手可能である。
1つのナノボディは、120アミノ酸(cDNAとして360bp)ほどなので、クローニングなどに利用するための配列を付加しても500bp未満の長さに収めることができる。したがって、利用したい特定ナノボディのアミノ酸配列がわかっていれば、いくつかの民間会社が提供している長鎖DNAを化学合成するサービスなどを利用することで短期間のうちにcDNA配列が入手可能である。


 
通常、ナノボディは、目的別に発現ベクターにクローニングした後、 哺乳類細胞だけなく、 細菌、酵母、植物でも産生させることができる。哺乳類細胞では、抗体が本来機能する細胞外だけでなく、細胞内部でも発現させることが可能である(イントラボディ、下記参考)。ただし、ナノボディの配列はそれぞれ異なり、ジスルフィド結合の生成が抗原との結合力あるコンフォメーションを取るために必要な場合、細胞外とは還元環境の異なる細胞内や細菌などでは活性のあるものが産生できないものもある。ナノボディの中には90℃という高温でも失活しないものもあるように<ref><pubmed>10209277</pubmed></ref><ref><pubmed>24739391</pubmed></ref>、一般に安定性は高いが、これも各ナノボディのアミノ酸配列から生じる特性による。
多くの種類のナノボディは、目的別に発現ベクターにクローニングした後、 哺乳類細胞だけなく、 細菌、酵母、植物でも産生させることができる。哺乳類細胞では、抗体が本来機能する細胞外だけでなく、細胞内部でも発現させることが可能である(イントラボディ、下記参考)。ただし、ナノボディの配列はそれぞれ異なり、ジスルフィド結合の生成が抗原との結合力あるコンフォメーションを取るために必要な場合、細胞外とは還元環境の異なる細胞内や細菌などではうまくいかない可能性はある。ナノボディの中には90℃という高温でも失活しないものもあるように<ref><pubmed>10209277</pubmed></ref><ref><pubmed>24739391</pubmed></ref>、一般に安定性は高いが、これも各ナノボディのアミノ酸配列から生じる特性による。




==新規ナノボディの作製法==
==新規ナノボディの作製法==
一般的な方法としては、重鎖抗体を産生する動物を飼育し、それを抗原で免疫することで、重鎖抗体が得られる。 比較的小型のリャマ Lama glamaのほかに、アルパカVicugna pacos、ヒトコブラクダCamelus dromedarius、ネコザメ Heterodontus francisci などが免疫に利用されている。次に免疫された動物から血液を採集し、その中にあるB細胞から、可変領域を含むcDNAライブラリーを作製、そのライブラリーを固定化した抗原を使った[[ファージディスプレイ]]などの方法でスクリーニングすることで、cDNA配列を単離し、抗原に結合するナノボディ配列を知ることができる<ref><pubmed>24577359</pubmed></ref><ref><pubmed>19554288</pubmed></ref>。   
一般的な方法としては、重鎖抗体を産生する動物を飼育し、それを抗原で免疫することで、重鎖抗体が得られる。 比較的小型のリャマのほかに、アルパカ、ヒトコブラクダ、小型のネコザメ(Heterodontus francisci)などが免疫に利用されている。次に免疫された動物から血液を採集し、その中にあるB細胞から、可変領域を含むcDNAライブラリーをM13ファージを使った[[ファージディスプレイ]]ライブラリーに組み込み、固定化した抗原を使ったスクリーニングすることで、cDNA配列を単離し、抗原に結合するナノボディ配列を知ることができる<ref><pubmed>24577359</pubmed></ref><ref><pubmed>19554288</pubmed></ref>。ラクダ科動物の遺伝子を組み込んだマウスも開発されているが、その利用は一般的ではないようである<ref><pubmed>16148123</pubmed></ref><ref><pubmed>17015837</pubmed></ref>。   


このスクリーニングを効果的に行うための工夫が多数開発されてきている<ref><pubmed>29477934</pubmed></ref>。ファージディスプレイの担体の工夫、グラム陽性バクテリア表面へのディスプレイ、酵母細胞表面へのディスプレイ、[[mRNAディスプレイ]]、[[リボソームディスプレイ]]、細胞内での[[2ハイブリッドスクリーニング]]などが用いられてきている。
このスクリーニングを効果的に行うための工夫が多数開発されてきている<ref><pubmed>29477934</pubmed></ref>。ファージディスプレイの担体の工夫、Staphylococcus carnosusのようなグラム陽性バクテリア表面へのディスプレイ、酵母細胞表面へのディスプレイ、[[mRNAディスプレイ]]、[[リボソームディスプレイ]]、細胞内での[[2ハイブリッドスクリーニング]]などが用いられてきている。


特に、最近、これらの方法を組み合わせることで、効率的に行う戦略が考案されている。Fridyらは、免疫動物の結合抗体を精製しその質量スペクトルの結果とファージディスプレイのハイスループットな配列決定を組み合わせる方法で、蛍光タンパク質に結合する多数のナノボディを報告した<ref><pubmed>25362362</pubmed></ref>  。Zimmermann は、リボソームディスプレイ、ファージディスプレイ、ELISAを組み合わせることで、短期間にナノボディ配列を得る戦略を報告している<ref><pubmed>29792401</pubmed></ref>。また、McMahon らは、酵母ディスプレイを用いて、免疫動物を用いない合成ライブラリーをスクリーニングすることで親和性の高いナノボディ配列を得ることができることを示している<ref><pubmed>29434346</pubmed></ref> 。ただ、このような非免疫ライブラリーや合成ライブラリーを用いる方法については、まだ適用例が多くなく、標準的な方法とされるものが存在しないというのが実情であろう。また、ある程度の抗原親和性を示すナノボディの配列を調整することで、[[親和性の成熟]](affinity maturation)を行うこともできる<ref><pubmed>15777944</pubmed></ref> 。将来的には人工知能などを使ったナノボディのデザインなども可能になるのかもしれない<ref><pubmed>29672675</pubmed></ref><ref><pubmed>28953867</pubmed></ref>。
特に、最近、これらの方法を組み合わせることで、効率的に行う戦略が考案されている。Fridyらは、免疫動物の結合抗体を精製しその質量スペクトルの結果とファージディスプレイのハイスループットな配列決定を組み合わせる方法で、蛍光タンパク質に結合する多数のナノボディを報告した<ref><pubmed>25362362</pubmed></ref>  。Zimmermann は、リボソームディスプレイ、ファージディスプレイ、ELISAを組み合わせることで、短期間にナノボディ配列を得る戦略を報告している<ref><pubmed>29792401</pubmed></ref>。また、McMahon らは、酵母ディスプレイを用いて、免疫動物を用いない合成ライブラリーをスクリーニングすることで親和性の高いナノボディ配列を得ることができることを示している<ref><pubmed>29434346</pubmed></ref> 。ただ、このような非免疫ライブラリーや合成ライブラリーを用いる方法については、まだ適用例が多くなく、標準的な方法とされるものが存在しないというのが実情であろう。また、ある程度の抗原親和性を示すナノボディの配列を調整することで、[[親和性の成熟]](affinity maturation)を行うこともできる<ref><pubmed>15777944</pubmed></ref> 。将来的には人工知能などを使ったナノボディのデザインなども可能になるのかもしれない<ref><pubmed>29672675</pubmed></ref><ref><pubmed>28953867</pubmed></ref>。
71行目: 67行目:


====分子間相互作用など分子の機能理解への利用====
====分子間相互作用など分子の機能理解への利用====
ナノボディは、[[分子間相互作用]](Protein-protein interaction, [[PPI]])の研究ツールとしても有用である<ref><pubmed>24115738</pubmed></ref><ref><pubmed>29949961</pubmed></ref>。このために、1つの効果的な使用法は、イントラボディとして発現させ、[[FRET]]、[[LRET]]といったPPIを検出するための方法と組み合わせたバイオイメージングである<ref><pubmed>28725224</pubmed></ref><ref><pubmed>27510808 </pubmed></ref><ref><pubmed>27249560 </pubmed></ref>。  
ナノボディは、[[分子間相互作用]](Protein-protein interaction, [[PPI]])の研究ツールとしても有用である<ref><pubmed>24115738</pubmed></ref><ref><pubmed>29949961</pubmed></ref>。このために、1つの効果的な使用法は、イントラボディとして発現させ、[[FRET]]、[[LRET]]といったPPIを検出するための方法と組み合わせたバイオイメージングである<ref><pubmed>28725224</pubmed></ref><ref><pubmed>27510808 </pubmed></ref><ref><pubmed>27249560 </pubmed></ref>。また、細胞外分子のPPI研究のツールとしても利用されている<ref><pubmed>27644106</pubmed></ref><ref><pubmed>30033369</pubmed></ref>。


また、特定のPPIを阻害するナノボディを細胞内で発現させたりすることも可能である。このような方法は、分子機能の研究において、タンパク質の数を調整する[[RNAi]]や[[ゲノム編集]]による変異とは違ったアプローチになりうる<ref><pubmed>28913971</pubmed></ref> 。
また、特定のPPIを阻害するナノボディを細胞内で発現させたりすることも可能である。このような方法は、分子機能の研究において、タンパク質の数を調整する[[RNAi]]や[[ゲノム編集]]による変異法とは違ったアプローチである<ref><pubmed>28913971</pubmed></ref> 。


また、[[ユビキチン系]]を利用することで、ナノボディの標的タンパク質を特異的に分解することも可能である<ref><pubmed>22157958</pubmed></ref>。
また、[[ユビキチン系]]を利用することで、ナノボディの標的タンパク質を特異的に分解することも可能である<ref><pubmed>22157958</pubmed></ref>。
82行目: 78行目:
細胞接着分子[[wj:フィブロネクチン]中の代表的なモチーフであるtype IIIリピートは、免疫グロブリンドメインと構造が類似しており、これを他の分子に結合する免疫グロブリンのように改変することが可能である。この方法は、'''モノボディ'''(monobody)と名付けられている<ref><pubmed>22198408</pubmed></ref>。この方法は、ナノボディと違って、ジスルフィド結合によって構造が左右されないので、 細胞内での還元状態の環境でも利用できる可能性が広がる。例えば、Arnoldのグループによって開発された'''FingR'''は、[[PSD95]]や[[ゲフィリン]]といったシナプスタンパク質を認識することができる<ref><pubmed>23791193</pubmed></ref> 。
細胞接着分子[[wj:フィブロネクチン]中の代表的なモチーフであるtype IIIリピートは、免疫グロブリンドメインと構造が類似しており、これを他の分子に結合する免疫グロブリンのように改変することが可能である。この方法は、'''モノボディ'''(monobody)と名付けられている<ref><pubmed>22198408</pubmed></ref>。この方法は、ナノボディと違って、ジスルフィド結合によって構造が左右されないので、 細胞内での還元状態の環境でも利用できる可能性が広がる。例えば、Arnoldのグループによって開発された'''FingR'''は、[[PSD95]]や[[ゲフィリン]]といったシナプスタンパク質を認識することができる<ref><pubmed>23791193</pubmed></ref> 。


免疫グロブリンを利用しない組み換え結合体には、このほかにも、アンキリンリピートを利用した'''DARPin'''(Designed ankyrin repeat proteins)などの方法がある<ref name=Helma2015/>。DARPinの場合、凸型で隠れた構造を認識しやすいナノボディとは対照的に認識に関わる構造が凹型になりやすい。
免疫グロブリンを利用しない組み換え結合体には、このほかにも、アンキリンリピートを利用した'''DARPin'''(Designed ankyrin repeat proteins)などの方法がある<ref name=Helma2015/>。DARPinは認識に関わる構造が凹型になりやすく、パラトープが凸型でタンパク質中に埋もれた構造を認識しやすいナノボディとは対照的である。一般にナノボディは小分子を認識するものは作製が困難であるとされており<ref name=Arbabi2017/>、ナノボディー以外の組み換え結合体はこのようなナノボディの弱点を克服するのに有用であろう。


==抗体利用研究の再現性==
==抗体利用研究の再現性==
近年、生命科学系の研究では、論文発表された実験結果の一部が容易に再現できないとされる問題がしばしば指摘されている。抗体の利用は、この再現性問題の重要な要因の1つであるとされる<ref><pubmed>25993940</pubmed></ref><ref><pubmed>12949777</pubmed></ref><ref><pubmed>29688318</pubmed></ref>。例えば、ウサギなどからのポリクローン抗体は、多数の異なる抗体分子を含んだポリクローン抗体という性格上、免疫した動物などバッチごとの差が大きい。また、[[wj:モノクローン抗体]]は、ハイブリドーマ細胞を増殖させることで、永遠に同じものを得ることができるはずであるが、市販抗体は予期せず販売中止になったり、ハイブリドーマ細胞は極低温で凍結維持しなくてはならず、災害や個々の研究者の都合により失われてしまうこともある。ナノボディは、アミノ酸配列レベルで定義されるので質は同じであり、DNAという形で安価で長期保存が可能である。またDNAが失われても、登録されたアミノ酸配列から容易に再生できるので、抗体の利用研究の再現性問題の解決法として注目されている。
近年、生命科学系の研究では、論文発表された実験結果の一部が容易に再現できないとされる問題がしばしば指摘されている。抗体の利用は、この再現性問題の重要な要因の1つであるとされる<ref><pubmed>25993940</pubmed></ref><ref><pubmed>29688318</pubmed></ref>。例えば、ウサギなどからのポリクローン抗体は、多数の異なる抗体分子を含んだポリクローン抗体という性格上、免疫した動物などバッチごとの差が大きい。また、[[wj:モノクローン抗体]]は、ハイブリドーマ細胞を増殖させることで、永遠に同じものを得ることができるはずであるが、市販抗体は予期せず販売中止になったり、ハイブリドーマ細胞は極低温で凍結維持しなくてはならず、災害や個々の研究者の都合により失われてしまうこともある。ナノボディは、アミノ酸配列レベルで定義されるので質は同じであり、DNAという形で安価で長期保存が可能である。万一DNAが失われても、登録されたアミノ酸配列をもとにして容易に再生できるので、抗体の利用研究の再現性問題の解決法として注目されている。


==ナノボディの応用==
==ナノボディの応用==
従来の抗体同様に、診断や細胞分離技術への利用とともに、次世代[[抗体医薬]]として、感染症、がん、自己免疫疾患、移植や再生医療、神経系疾患などへの適用が期待される<ref><pubmed>29209322</pubmed></ref><ref><pubmed>27499623</pubmed></ref><ref><pubmed>29163515</pubmed></ref>。 Ablynx社が開発した 後天性血栓性血小板減少性紫斑病を対象とした抗VonWillebrand因子ナノボディであるcaplacizumabは、既に第III相試験で良好な結果が得られている<ref>http://www.ablynx.com/rd-portfolio/overview/</ref>。
従来の抗体同様に、診断や細胞分離技術への利用とともに、次世代の[[抗体医薬]]として、感染症、がん、自己免疫疾患、移植や再生医療、神経系疾患などへの適用が期待される<ref name=Arbabi2017/><ref name=wang2016><pubmed>27499623</pubmed></ref><ref><pubmed>29163515</pubmed></ref>。 Ablynx社が開発した 後天性血栓性血小板減少性紫斑病を対象とした抗VonWillebrand因子ナノボディであるcaplacizumabは、既に第III相試験で良好な結果が得られている<ref>http://www.ablynx.com/rd-portfolio/overview/</ref>。近年、抗体医薬が世界の医薬品売上高ランキングの上位に位置していることから考えて、その実用の将来性は大きい(参考:平成26年度 特許出願技術動向調査報告書~抗体医薬)<ref>http://www3.keizaireport.com/report.php/RID/245009/</ref>。また、農業分野でもその利用が注目されている<ref name=wang2016/>。


==参考文献==
==参考文献==
<references/>
<references/>