9,444
回編集
(ページの作成:「英語名:Cell Assembly == 概要 == 1940年代後半にカナダの心理学者D.O.Hebbにより定義された脳内(主として皮質内)において単一...」) |
細編集の要約なし |
||
9行目: | 9行目: | ||
脳で行われる情報処理の機能を単一細胞のレベルで検討するか、複数の細胞の集団(セルアセンブリ)のレベルで検討するかに関しては、20世紀初頭の神経細胞の発見以来継続する議論である。歴史的には、脳科学の黎明期における脳の全体論と局在論の議論と共通する論理構造を持っていると思われる。記述レベルの変遷はあるが、全体論と局在論は常に交互に時代のパラダイムとして登場している。脳の構成要素(領野、ニューロン、[[イオンチャンネル]]、伝達物質、遺伝子など)の詳細が不明な状態では、想像力が必要となるため全体論的な枠組みが必然となる。一方、脳の構成要素の詳細が実験的に明らかとなると、その物理的実体を中心として機能を議論するために局在論が主流となる。そして、この構成要素のレベルだけでは解明できない新たな現象が明らかとなり、新たな記述レベルでの全体論が再登場する。60年代のMountcastleやHubel & Wieselの機能的に特殊化した単一細胞の発見により局在論が主流となり、Hebbのセルアセンブリの概念は忘れられていたが、近年の神経ネットワークを対象とする研究への移行に伴って再登場している。 | 脳で行われる情報処理の機能を単一細胞のレベルで検討するか、複数の細胞の集団(セルアセンブリ)のレベルで検討するかに関しては、20世紀初頭の神経細胞の発見以来継続する議論である。歴史的には、脳科学の黎明期における脳の全体論と局在論の議論と共通する論理構造を持っていると思われる。記述レベルの変遷はあるが、全体論と局在論は常に交互に時代のパラダイムとして登場している。脳の構成要素(領野、ニューロン、[[イオンチャンネル]]、伝達物質、遺伝子など)の詳細が不明な状態では、想像力が必要となるため全体論的な枠組みが必然となる。一方、脳の構成要素の詳細が実験的に明らかとなると、その物理的実体を中心として機能を議論するために局在論が主流となる。そして、この構成要素のレベルだけでは解明できない新たな現象が明らかとなり、新たな記述レベルでの全体論が再登場する。60年代のMountcastleやHubel & Wieselの機能的に特殊化した単一細胞の発見により局在論が主流となり、Hebbのセルアセンブリの概念は忘れられていたが、近年の神経ネットワークを対象とする研究への移行に伴って再登場している。 | ||
複数の神経細胞が何らかの特性に関して共通性を持つ場合には、これらの細胞集団をセルアセンブリと定義することが可能である。共通性を定義する特性は、解剖学的な結合様式(例えば、特定の領野からの投射を受けている細胞全体など)である場合も考えられる。解剖学的な特性から定義されたセルアセンブリに関しては、シナプス結合の可塑性の時間スケールは心理学的な時間スケール(数百ミリ秒)より十分に長いという前提の下では、集団を構成する細胞メンバーは固定化された静的なものであると考える。しかし、現在の神経科学において、セルアセンブリは単に解剖学的な結合特性からではなく、機能的な特性に共通性を持つ細胞集団の概念として使用されることが一般的である。この意味でのセルアセンブリの概念を最初に提案したのはD.O.Hebb | 複数の神経細胞が何らかの特性に関して共通性を持つ場合には、これらの細胞集団をセルアセンブリと定義することが可能である。共通性を定義する特性は、解剖学的な結合様式(例えば、特定の領野からの投射を受けている細胞全体など)である場合も考えられる。解剖学的な特性から定義されたセルアセンブリに関しては、シナプス結合の可塑性の時間スケールは心理学的な時間スケール(数百ミリ秒)より十分に長いという前提の下では、集団を構成する細胞メンバーは固定化された静的なものであると考える。しかし、現在の神経科学において、セルアセンブリは単に解剖学的な結合特性からではなく、機能的な特性に共通性を持つ細胞集団の概念として使用されることが一般的である。この意味でのセルアセンブリの概念を最初に提案したのはD.O.Hebb <ref name=ref1>'''D.O.Hebb'''<br>The organization of behavior – a neuropsychological theory.<br>John Wiley & Sons Inc. 1949. </ref>であると考えられる。 | ||
== Hebbのセルアセンブリ == | == Hebbのセルアセンブリ == | ||
Hebbが1949年に発表した著作”Organization of | Hebbが1949年に発表した著作”Organization of Behavior”<ref name=ref1 />は「引用されはするが読まれることのない幻の名著」(行動の機構、鹿取他訳、下巻 p.265)として知られる。サイバネティクスが黎明し、機械・コンピュータと生物をシステムとして統一的に研究対象とする機運の高まり、McCulloch & Pittsによる神経細胞ネットワークによる論理回路実現の理論的可能性の提唱などの時代背景において書かれたこの著作には、神秘主義に陥りがちであった心理学的議論をいかに論理的・合理的に構成するかに対して熟考された内容が展開されている。現在の脳科学の知識を持った我々が読み返すと、「ヘッブシナプス」や「ヘッブのセルアセンブリ」といったHebbの名を冠して引用されることのある、古典として知られる概念だけではなく、活動が時間的相関で関係付けられる細胞集団の動的振る舞いを基本として情報表現、情報処理を議論する最近の研究概念がすでに記述されているように読み取れる。これは、決して読者の欲目だけではないように思われる。Hebbの著作からキー概念と思われる文章を抜き出して、再検討を試みることは、セルアセンブリの基本概念の理解に役立つと考えるため、少々長くなるがここにまとめる。尚、以下の文中で[ ]で囲まれた部分は本概説の執筆者の補足である。 | ||
なんらかの構造的な変化とは独立した、完全な神経活動のパターンの作用としての[[記憶痕跡]]というものが、存在すると考えてよいだろう。・・・そのような痕跡は、きわめて不安定なものだということを指摘している。(同上巻 p.166) | なんらかの構造的な変化とは独立した、完全な神経活動のパターンの作用としての[[記憶痕跡]]というものが、存在すると考えてよいだろう。・・・そのような痕跡は、きわめて不安定なものだということを指摘している。(同上巻 p.166) | ||
24行目: | 24行目: | ||
[下位の領野の複数細胞の活動パターンという文脈性により、上位の領野の反応特性が変化するという動的なゲインコントロールを予言している] | [下位の領野の複数細胞の活動パターンという文脈性により、上位の領野の反応特性が変化するという動的なゲインコントロールを予言している] | ||
したがって17野以降の部位で、2つの異なった視覚刺激によって活性化している組織は、(1)大まかには同一だが、(2)組織学的には別個のもの、ということになるはずである。刺激パターンの違いは、知覚を媒介している脳の部位に大きな差を生じさせることにはならないであろう。・・・と同時に、刺激作用の部位またはパターンの違いは、これら領野において、一貫した発火活動ないしは最大の発火活動を起こす特定の細胞群が、異なっているということを意味すると考えられる。(同 p.178-179) | |||
[外部刺激の物理特徴と比較的明確な対応が見られる17野の細胞とは異なり、高次領野の細胞は脳内においてのみ区別されうる抽象的な情報表現になっている可能性を議論している。また、明らかに分散表現のパラダイムを前提としている] | |||
解剖学的にはこのように機構化の欠けた細胞群の中に、活動の統合の基礎となるようなものを見出すことができるだろうか?(同 p.179) | 解剖学的にはこのように機構化の欠けた細胞群の中に、活動の統合の基礎となるようなものを見出すことができるだろうか?(同 p.179) | ||
52行目: | 52行目: | ||
== 機能的セルアセンブリの定義 == | == 機能的セルアセンブリの定義 == | ||
Hebbのセルアセンブリが解剖学的な共通特性から定義される細胞集団と決定的に異なるのは、細胞の活動状態という動的な特性の共通性により定義される点である。細胞の活動間に相関が存在するためには、解剖学的な結合構造の土台は必要条件である。しかし、特に皮質内ネットワークにおいては、細胞がスパイク発火するためには複数の細胞からの興奮性入力が短時間に集中する必要がある(Hebbの著書ではbombardmentと表現されている)。このため、スパイク活動間の相関関係は必ずしも細胞間の1対1の解剖学的結合とは一致せず、共通入力を送っている複数細胞の活動状態という脳内の文脈性に依存する。これらの概念は、すでに上記のHebbの著作からの抜粋において説明を行った。 | |||
発火するかしないかの2状態のみを取る細胞において、細胞活動状態の共通性でセルアセンブリを定義する場合には、ある時間スケールで平均した活動度の相関関係(主として統計的に有意な正の相関を持つ場合)から定義される。しかし、セルアセンブリの定義は平均活動度を計算する時間スケールにより大きく異なる。例えば、心理学的な時間スケール(数百ミリ秒)を適用すれば、通常の意味の平均発火率となり、心理学的時間スケールで発火率が上昇しているという共通性(相関性)がセルアセンブリの定義となる。入力層―隠れ層(中間層)―出力層の3層からなる人工ニューラルネットワークモデルにおいて入力層の発火状態の特定の空間特徴(パターン)に特異的に反応する複数の隠れ層細胞の集団やHopfieldの連想記憶モデルにおいて初期状態からのダイナミクスで収束したアトラクターで同時に発火状態を取る細胞ユニットの集団などが平均発火率の関係に基づくセルアセンブリに対応する。一方、活動度の関係性を定義する時間スケールを数ミリ秒とすると、同期発火(シンクロニー)し、細胞間のスパイク時系列の相互相関ヒストグラム(cross-correlogram)に統計的に有意なピークが存在するという特性がセルアセンブリの定義となる。 | |||
==セルアセンブリによる情報符号化と分散表現 == | ==セルアセンブリによる情報符号化と分散表現 == | ||
[[image:セルアセンブリ図1.jpg|thumb| | [[image:セルアセンブリ図1.jpg|thumb|300px|'''図1''']] | ||
セルアセンブリの概念の必要性は、情報符号化の問題と密接な関係が存在する。単一細胞の平均発火率による情報符号化では、外界の対象または特定の行動と単一細胞の活動が一対一に対応するという原理を前提としている。これは「おばあさん細胞」の符号化パラダイムである。この符号化においては、対象に新たな修飾属性を付加して行った場合(たとえば、「メガネをかけて茶髪のおばあさん」など)、その膨大な組み合わせの一つ一つに対応して異なる細胞が必要になると言う論理的困難が生じる(組み合わせ爆発)。セルアセンブリによる情報符号化においては、修飾属性の組み合わせに対して、符号化に関与する細胞自体も組み合わせで対応するという論理構造を前提とする。大変に荒っぽい議論であるが、色を符号化する皮質領野の細胞集団を考える。図1a, bには同じ細胞の集団が「赤」と「青」それぞれの色の符号化を行っている状態を示している。セルアセンブリによる情報表現により、どちらの色においても心理学的時間に平均発火率を上昇させる複数の細胞(黒丸で示した細胞)が符号化に関与している。この符号化においては、情報は複数の細胞の活動に分散して表現されており(分散表現)、個々の細胞では情報は特定出来ない。図においては、中央の細胞は「赤」と「青」のどちらの表現においても活動しているため、この細胞自身には二つの色の区別の情報は存在せず、この細胞と同時にどの細胞が活動しているのかという組み合わせ(関係性、空間パターン)にのみ情報が存在する。これはパターン符号化または関係性符号化と呼ばれる概念である。単一細胞による情報表現を「点」による表現と考えれば、セルアセンブリは空間パターンという「面」による表現であると考えられる。しかし、平均発火率に基づくセルアセンブリでの情報符号化では、同時に活動する二つ以上のセルアセンブリが共存した場合には個々の細胞がどのアセンブリに属するのかを表現することが出来ないという論理的な困難が存在する。これは「重ね合わせの破綻」および「バインディング問題」として知られている。この問題を解決するための一つの方法は、さらに「時間」の自由度を導入して、同じセルアセンブリに属する細胞間にミリ秒精度でのスパイク発火タイミングの時間相関を生じさせることである。 | セルアセンブリの概念の必要性は、情報符号化の問題と密接な関係が存在する。単一細胞の平均発火率による情報符号化では、外界の対象または特定の行動と単一細胞の活動が一対一に対応するという原理を前提としている。これは「おばあさん細胞」の符号化パラダイムである。この符号化においては、対象に新たな修飾属性を付加して行った場合(たとえば、「メガネをかけて茶髪のおばあさん」など)、その膨大な組み合わせの一つ一つに対応して異なる細胞が必要になると言う論理的困難が生じる(組み合わせ爆発)。セルアセンブリによる情報符号化においては、修飾属性の組み合わせに対して、符号化に関与する細胞自体も組み合わせで対応するという論理構造を前提とする。大変に荒っぽい議論であるが、色を符号化する皮質領野の細胞集団を考える。図1a, bには同じ細胞の集団が「赤」と「青」それぞれの色の符号化を行っている状態を示している。セルアセンブリによる情報表現により、どちらの色においても心理学的時間に平均発火率を上昇させる複数の細胞(黒丸で示した細胞)が符号化に関与している。この符号化においては、情報は複数の細胞の活動に分散して表現されており(分散表現)、個々の細胞では情報は特定出来ない。図においては、中央の細胞は「赤」と「青」のどちらの表現においても活動しているため、この細胞自身には二つの色の区別の情報は存在せず、この細胞と同時にどの細胞が活動しているのかという組み合わせ(関係性、空間パターン)にのみ情報が存在する。これはパターン符号化または関係性符号化と呼ばれる概念である。単一細胞による情報表現を「点」による表現と考えれば、セルアセンブリは空間パターンという「面」による表現であると考えられる。しかし、平均発火率に基づくセルアセンブリでの情報符号化では、同時に活動する二つ以上のセルアセンブリが共存した場合には個々の細胞がどのアセンブリに属するのかを表現することが出来ないという論理的な困難が存在する。これは「重ね合わせの破綻」および「バインディング問題」として知られている。この問題を解決するための一つの方法は、さらに「時間」の自由度を導入して、同じセルアセンブリに属する細胞間にミリ秒精度でのスパイク発火タイミングの時間相関を生じさせることである。 | ||
65行目: | 65行目: | ||
Hebbがセルアセンブリの概念を提唱した当時は、皮質内の単一細胞の[[細胞外記録]]が技術的限界であったため、セルアセンブリの存在の実験的検証は不可能であった。単一細胞の活動記録技術が確立し、脳の異なる領野において個々の細胞が外界刺激変数に対して高度に特殊化した反応特性を示すことが発見されると、情報処理の機能を単一細胞レベルで議論する研究が中心となった。例えば、Lettvinらの著名な論文”What frog’s eye tells to brain”やMountcastleやHubel & Wieselらの機能的に特化した細胞の構成によるコラム構造などの発見である。しかし、単一細胞の発火率という一変数だけでは表現の自由度が足りず(例えば、視覚皮質の[[方位選択性]]細胞の発火率の変化だけから刺激方位の変化とコントラストの変化の両方を復号化することは不可能である)、異なる反応特性を示す細胞集団によるポピュレーション平均または活動プロファイルという情報表現形式(集団符号化)が検討される必要が生じた。また、刺激に対する単一試行の細胞活動には大きな確率的変動性 (variability) が存在することから、同一または類似した反応特性を示す細胞集団に渡るアンサンブル平均による神経反応の信頼性の向上の必要性が議論されている。これらの符号化パラダイムの拡張と平行して、複数の細胞の発火活動を同時に記録する技術(多細胞活動同時記録法、マルチニューロンレコーディング)が発達し、セルアセンブリでの符号化の実験的検証が可能となった。現在の神経科学実験においては、平均発火率の関係性に基づく集団符号化(ポピュレーションコーディング)の研究とスパイクタイミングの関係性に基づくセルアセンブリの研究に二分されていると考えられる。 | Hebbがセルアセンブリの概念を提唱した当時は、皮質内の単一細胞の[[細胞外記録]]が技術的限界であったため、セルアセンブリの存在の実験的検証は不可能であった。単一細胞の活動記録技術が確立し、脳の異なる領野において個々の細胞が外界刺激変数に対して高度に特殊化した反応特性を示すことが発見されると、情報処理の機能を単一細胞レベルで議論する研究が中心となった。例えば、Lettvinらの著名な論文”What frog’s eye tells to brain”やMountcastleやHubel & Wieselらの機能的に特化した細胞の構成によるコラム構造などの発見である。しかし、単一細胞の発火率という一変数だけでは表現の自由度が足りず(例えば、視覚皮質の[[方位選択性]]細胞の発火率の変化だけから刺激方位の変化とコントラストの変化の両方を復号化することは不可能である)、異なる反応特性を示す細胞集団によるポピュレーション平均または活動プロファイルという情報表現形式(集団符号化)が検討される必要が生じた。また、刺激に対する単一試行の細胞活動には大きな確率的変動性 (variability) が存在することから、同一または類似した反応特性を示す細胞集団に渡るアンサンブル平均による神経反応の信頼性の向上の必要性が議論されている。これらの符号化パラダイムの拡張と平行して、複数の細胞の発火活動を同時に記録する技術(多細胞活動同時記録法、マルチニューロンレコーディング)が発達し、セルアセンブリでの符号化の実験的検証が可能となった。現在の神経科学実験においては、平均発火率の関係性に基づく集団符号化(ポピュレーションコーディング)の研究とスパイクタイミングの関係性に基づくセルアセンブリの研究に二分されていると考えられる。 | ||
謝辞 | == 謝辞 == | ||
ヘッブの著作の内容に関しては東京都医学総合研究所の渡邊正孝先生から貴重なご意見を伺いましたことをお礼申し上げます。 | ヘッブの著作の内容に関しては東京都医学総合研究所の渡邊正孝先生から貴重なご意見を伺いましたことをお礼申し上げます。 | ||
== 参考文献 == | |||
<references /> | |||
D.O. | 2. '''D.O.ヘッブ'''<br> 行動の機構 脳メカニズムから心理学へ<br> 鹿取廣人、金城辰夫、鈴木光太郎、鳥居修晃、渡邊正孝共訳<br> ''岩波文庫'' 2011<br> (有名なヘッブシナプス、ヘッブのセルアセンブリの概念は4章と5章に展開されている。) | ||
D.O. | 3. '''D.O.ヘッブ'''<br> 行動学入門 第三版<br> 白井常、鹿取廣人、平野俊二、金城辰夫、今村護郎共訳<br> 紀伊國屋書店 1975<br> (「媒介過程」に関しては、第5章で説明されている。) | ||
Gerstein G.L., Bedenbaugh P., Aertsen AD M.H.J. | 4. '''Gerstein G.L., Bedenbaugh P., Aertsen AD M.H.J.'''<br> Neuronal Assembiles<br> ''IEEE Trans. Biomed.'' Eng. 36, 4-14, (1989). | ||
IEEE Trans. Biomed. Eng. 36, 4-14, (1989). | |||
Abeles M. | 5. '''Abeles M.'''<br> Corticonics –neural circuits of the cerebral cortex.<br> ''Cambridge U.P.'', Cambridge, 1991. | ||
Cambridge U.P., Cambridge, 1991. | |||
Braitenberg V. | 6. '''Braitenberg V.'''<br> Cell Assemblies in the Cerebral Cortex: in Theoretical Approaches to Complex Systems<br> ''Lecture notes in Biomathematics'', Vol. 21, Heim R. and Palm G., Eds. <br> New York, Springer 1978, pp.171-188. | ||
in Theoretical Approaches to Complex Systems | |||
(執筆者:伊藤浩之 担当編集委員:藤田一郎) |