「Nogo」の版間の差分

7 バイト除去 、 2012年2月3日 (金)
編集の要約なし
編集の要約なし
編集の要約なし
29行目: 29行目:
====   受容体と細胞内シグナル  ====
====   受容体と細胞内シグナル  ====


 Nogo受容体はGPIアンカー型蛋白であり、細胞内ドメインを持っていない。したがってNogo受容体は神経細胞内にシグナルを伝達することができないため、シグナル伝達を担う別の受容体がNogo受容体と共受容体を形成しているのではないかと考えられた。<br> その頃、山下(現大阪大学教授)らは機能の良く分かっていなかった神経栄養因子の受容体であるp75受容体の発生時における役割を明らかにした。[[Image:Nogo signalnew.jpg|frame|right|400px|(図2)Nogoのシグナル伝達経路]]p75は、主として末梢神経の軸索伸展を促進していることが報告された<ref>Yamashita, T., Tucker, K.L., Barde, Y.A.: Neuron, 24: 585-593 (1999)</ref>。その後、山下等はこのp75が軸索伸展阻害因子の一つMAG(Myelin Associated Glycoprotein)のシグナルを神経細胞に伝える受容体であることを見い出した<ref>Yamashita, T., Higuchi, H., Tohyama, M.: J. Cell Biol., 157, 565-570 (2002)</ref>。P75を欠失しているマウスの神経細胞はMAGに対する反応性を失ったのである。<br>p75がMAGのシグナルを伝える受容体であれば、p75とNogo受容体は共受容体を形成し、MAGのみならずNogoとOMgpのシグナルも伝えていることが予測される。その仮説は直ちに検証され、Heらによって正しいことが証明された<ref>Wang, K.C., et al.: Nature, 420, 72-78  (2002)</ref>。こうしてp75は再生阻害のキープレーヤーであると考えられるようになった。<br>それではp75を介してどのような細胞内シグナルが形成されるのだろうか。 ニューロトロフィンがp75に作用して軸索の伸展を促すメカニズムは、Rhoの不活性化である<ref>Yamashita, T., Tucker, K.L., Barde, Y.A.: Neuron, 24: 585-593 (1999)</ref>。Rhoはアクチン骨格系あるいはチューブリンを制御することによって、細胞の形態形成の鍵となる蛋白である(図5)。さらにメカニズム解析がなされ、p75によりRhoとRhoの活性化阻害蛋白であるRho guanine nucleotide dissociation inhibitor(Rho GDI)が解離することでRhoが活性化に導かれる事実が判明した。<br> しかしながらp75/Nogo受容体のみでは、ある種の細胞ではリガンドで刺激してもRhoが活性化しない。必要ではあるが十分ではないということである。そこでLingo-1が新しいp75/Nogo受容体コンポーネントの仲間入りした。この受容体がどのようにシグナル伝達に関わっているかについては明らかではないが、p75/Nogo受容体/Lingo-1という受容体複合によりRhoが活性化されて、軸索伸展が阻止されるという基本モデルが完成した(図2左側)。  
 Nogo受容体はGPIアンカー型蛋白であり、細胞内ドメインを持っていない。したがってNogo受容体は神経細胞内にシグナルを伝達することができないため、シグナル伝達を担う別の受容体がNogo受容体と共受容体を形成しているのではないかと考えられた。<br> その頃、山下(現大阪大学教授)らは機能の良く分かっていなかった神経栄養因子の受容体であるp75受容体の発生時における役割を明らかにした。[[Image:Revised_Nogo_signal.jpg|frame|right|500px|(図2)Nogoのシグナル伝達経路]]p75は、主として末梢神経の軸索伸展を促進していることが報告された<ref>Yamashita, T., Tucker, K.L., Barde, Y.A.: Neuron, 24: 585-593 (1999)</ref>。その後、山下等はこのp75が軸索伸展阻害因子の一つMAG(Myelin Associated Glycoprotein)のシグナルを神経細胞に伝える受容体であることを見い出した<ref>Yamashita, T., Higuchi, H., Tohyama, M.: J. Cell Biol., 157, 565-570 (2002)</ref>。P75を欠失しているマウスの神経細胞はMAGに対する反応性を失ったのである。<br>p75がMAGのシグナルを伝える受容体であれば、p75とNogo受容体は共受容体を形成し、MAGのみならずNogoとOMgpのシグナルも伝えていることが予測される。その仮説は直ちに検証され、Heらによって正しいことが証明された<ref>Wang, K.C., et al.: Nature, 420, 72-78  (2002)</ref>。こうしてp75は再生阻害のキープレーヤーであると考えられるようになった。<br>それではp75を介してどのような細胞内シグナルが形成されるのだろうか。 ニューロトロフィンがp75に作用して軸索の伸展を促すメカニズムは、Rhoの不活性化である<ref>Yamashita, T., Tucker, K.L., Barde, Y.A.: Neuron, 24: 585-593 (1999)</ref>。Rhoはアクチン骨格系あるいはチューブリンを制御することによって、細胞の形態形成の鍵となる蛋白である。さらにメカニズム解析がなされ、p75によりRhoとRhoの活性化阻害蛋白であるRho guanine nucleotide dissociation inhibitor(Rho GDI)が解離することでRhoが活性化に導かれる事実が判明した。<br> しかしながらp75/Nogo受容体のみでは、ある種の細胞ではリガンドで刺激してもRhoが活性化しない。必要ではあるが十分ではないということである。そこでLingo-1が新しいp75/Nogo受容体コンポーネントの仲間入りした。この受容体がどのようにシグナル伝達に関わっているかについては明らかではないが、p75/Nogo受容体/Lingo-1という受容体複合によりRhoが活性化されて、軸索伸展が阻止されるという基本モデルが完成した(図2左側)。  


<br>  
<br>  
151

回編集