「積分発火モデル」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
5行目: 5行目:


== 積分発火モデル ==
== 積分発火モデル ==
(Integrate and fire model)
Integrate and fire model


 脂質二重層からなる神経細胞の細胞膜により、電荷をもつイオンは細胞膜からの流出入を妨げてられている。細胞外の電位を基準電位 (0 mV) とした場合、細胞内の電位を表す膜電位は、通常、負の値をもつ過分極した状態(およそ–70 mV付近)をとる。神経細胞は、細胞膜の外側と内側にそれぞれ正の電荷および負の電荷をもつイオンを帯電させた状態になり、細胞膜はキャパシタの性質を有する。細胞膜上に発現したタンパク質であるイオンチャネルが、その状態によってイオンの流出入を促す場合があり、膜電位の変化をもたらす。膜電位をVとし、細胞膜の膜容量をCm、細胞膜(実際にはイオンチャンネル)を透過する電流 (膜電流) をImとすると、
 脂質二重層からなる神経細胞の細胞膜により、電荷をもつイオンは細胞膜からの流出入を妨げてられている。細胞外の電位を基準電位 (0 mV) とした場合、細胞内の電位を表す膜電位は、通常、負の値をもつ過分極した状態(およそ–70 mV付近)をとる。神経細胞は、細胞膜の外側と内側にそれぞれ正の電荷および負の電荷をもつイオンを帯電させた状態になり、細胞膜はキャパシタの性質を有する。細胞膜上に発現したタンパク質であるイオンチャネルが、その状態によってイオンの流出入を促す場合があり、膜電位の変化をもたらす。膜電位を<math>V</math>とし、細胞膜の膜容量を<math>Cm</math>、細胞膜(実際にはイオンチャンネル)を透過する電流 (膜電流) を<math>I_m</math>とすると、


と表せる(膜電流は慣習として、外向きを正にとる)。膜電位変化に寄与する電流として、外部からの注入電流Iextを考慮すると、
::<math>Cm=\frac{dV}{dt}=-I_m</math>
 
と表せる(膜電流は慣習として、外向きを正にとる)。膜電位変化に寄与する電流として、外部からの注入電流<math>I_{ext}</math>を考慮すると、
 
::<math>Cm=\frac{dV}{dt}=-I_m+I_{ext}</math>


のように書ける。
のように書ける。


 膜電流Imは、細胞膜上に発現するイオンチャネルを透過する電流を表す。イオンチャネルは、典型的には10種類程度発現し、それぞれ異なる特性を有する。各イオンチャネルを透過する電流のコンダクタンス(あるいは、その逆数の抵抗)は、膜電位に依存して変化するアクティブな性質をもち、この性質によりパルス状の膜電位変化である活動電位が生成される。しかし、活動電位は、膜電位が閾値と呼ばれるレベルまで上昇すると、そこからさらに急速に上昇して正の電位に到達後、急速に下降して閾値以下の過分極したレベルまで戻る(リセットと呼ぶ)という定型の変化を示すことから、活動電位生成中の変化は省略し、リセット後から閾値到達までの変化のみを定式化する。膜電流としては、アクティブな伝導性を無視し、伝導性の時間に不変な成分を括り出したリーク電流のみを採用する。リーク電流は、時間に不変なコンダクタンスをGL、この電流の反転電位をELとすると、
 膜電流<math>I_m</math>は、細胞膜上に発現するイオンチャネルを透過する電流を表す。イオンチャネルは、典型的には10種類程度発現し、それぞれ異なる特性を有する。各イオンチャネルを透過する電流のコンダクタンス(あるいは、その逆数の抵抗)は、膜電位に依存して変化するアクティブな性質をもち、この性質によりパルス状の膜電位変化である活動電位が生成される。しかし、活動電位は、膜電位が閾値と呼ばれるレベルまで上昇すると、そこからさらに急速に上昇して正の電位に到達後、急速に下降して閾値以下の過分極したレベルまで戻る(リセットと呼ぶ)という定型の変化を示すことから、活動電位生成中の変化は省略し、リセット後から閾値到達までの変化のみを定式化する。膜電流としては、アクティブな伝導性を無視し、伝導性の時間に不変な成分を括り出したリーク電流のみを採用する。リーク電流は、時間に不変なコンダクタンスを<math>G_L</math>、この電流の反転電位を<math>E_L</math>とすると、
 
::<math>I_m=G_L(V-E_L)</math>
 
と表すことができる。これに加え、膜電位が閾値<math>V_{th}</math>に到達した場合、その時刻に活動電位が発生したとみなし、膜電位をリセット電位<math>V_{reset}</math>にリセットするという処理を必要とする ('''図1A''')。従って、リーク電流を考慮したLeaky Integrate and Fireモデルは、


と表すことができる。これに加え、膜電位が閾値Vthに到達した場合、その時刻に活動電位が発生したとみなし、膜電位をリセット電位Vresetにリセットするという処理を必要とする (図1A)。従って、リーク電流を考慮したLeaky Integrate and Fireモデルは、
::<math>
\begin{cases}
Cm=\frac{dV}{dt}=-G_L(V-E_L)+I_{ext}\\
\\
\mbox{if }V\ge{V_{th}}, \mbox{then }V\leftarrow{V}_{reset}
\end{cases}
</math>
V\geV_{th}
</math>


と表せる。閾値以下の範囲では、膜電位の変化は微分方程式(1)に従う。
と表せる。閾値以下の範囲では、膜電位の変化は微分方程式(1)に従う。


 (1)式の両辺をGLで割ることにより、τm=Cm/GL, GL=Rm–1を用いて
 (1)式の両辺を<math></math>GLで割ることにより、<math></math>τm=Cm/GL, <math></math>GL=Rm–1を用いて


を得る。τm、Rmはそれぞれ、膜時定数、膜抵抗と呼ばれる。
を得る。<math></math>τm、<math></math>Rmはそれぞれ、膜時定数、膜抵抗と呼ばれる。
   
   
  このように、積分発火モデルにおける膜電位の変化は、線形の微分方程式で表される。従って、膜電位の挙動は解析的に計算できることが可能であり、神経細胞や神経回路の挙動に関する理論的解析が行いやすく、多くの研究で用いられてきた。
  このように、積分発火モデルにおける膜電位の変化は、線形の微分方程式で表される。従って、膜電位の挙動は解析的に計算できることが可能であり、神経細胞や神経回路の挙動に関する理論的解析が行いやすく、多くの研究で用いられてきた。
37行目: 53行目:
(1)
(1)
  (2)
  (2)
が1次関数) である。しかし、神経細胞は非線形システムであり、Hodgkin Huxley (HH) モデ を非線形関数で表したモデルがいくつか提案されてきた。また、HHモデルから、早いチャネ の関数に置き換え、遅いチャネル変数を定数に置き換える近似により、非線形積分発火モデルを導出できる<ref name=Abbott1990><pubmed>Abbott, L.F. & Kepler, T.B. (1990).<br>Model neurons: from Hodgkin-Huxley to Hopfield." In Statistical mechanics of neural networks (pp. 5-18). Springer, Berlin, Heidelberg.
が1次関数) である。しかし、神経細胞は非線形システムであり、Hodgkin Huxley (HH) モデ を非線形関数で表したモデルがいくつか提案されてきた。また、HHモデルから、早いチャネルの関数に置き換え、遅いチャネル変数を定数に置き換える近似により、非線形積分発火モデルを導出できる<ref name=Abbott1990>Abbott, L.F. & Kepler, T.B. (1990).<br>Model neurons: from Hodgkin-Huxley to Hopfield." In Statistical mechanics of neural networks (pp. 5-18). Springer, Berlin, Heidelberg.
[https://doi.org/10.1007/3540532676_37 PDF]</pubmed></ref><ref name=Jolivet2004><pubmed>15277599</pubmed></ref>[4,5]。
[https://doi.org/10.1007/3540532676_37 PDF]</ref><ref name=Jolivet2004><pubmed>15277599</pubmed></ref>[4,5]。


を2次関数  に拡張したQuadratic Integrate and Fire (QIF) モデルである。このモデルはサドルノード分岐を示す力学系の分岐点近傍の標準系 (Normal form) として得られたものである<ref name=Ermentrout1996><pubmed>8697231</pubmed></ref>[6]。QIFモデルには限られたタの微分方程式に拡張した<ref name=Izhikevich2003><pubmed>18244602  MATLABコードが著者の [https://www.izhikevich.org/publications/spikes.htm ホームページ]にある。</pubmed></ref>[7]。
を2次関数  に拡張したQuadratic Integrate and Fire (QIF) モデルである。このモデルはサドルノード分岐を示す力学系の分岐点近傍の標準系 (Normal form) として得られたものである<ref name=Ermentrout1996><pubmed>8697231</pubmed></ref>[6]。QIFモデルには限られたタの微分方程式に拡張した<ref name=Izhikevich2003><pubmed>18244602  MATLABコードが著者の [https://www.izhikevich.org/publications/spikes.htm ホームページ]にある。</pubmed></ref>[7]。
60行目: 76行目:
. (7)
. (7)


[ms] は時定数である。MATモデルは、膜電位が閾値に達したら、膜電位をリセットする代わりに閾値を上昇させるという点において積分発火モデルと異なる(図1)。このモデルは、わずか3つのパラメータで脳を構成する多様な発火パターンを再現する (図2)。MATモデルは、スパイクに着目した線形化近似を行うことで、HHモデルから導出することもできる<ref name=Kobayashi2016></ref> [16]。この解析により、速い時定数〜10 [ms] は膜時定数、遅い時定数〜200 [ms] は遅いカリウムイオン電流 (Mタイプ電流K+電流やCa2+活性化K+電流) に対 として指数関数を仮定し、膜電位をリセットするモデルもある<ref name=Liu2001><pubmed>11316338</pubmed></ref><ref name=Jolivet2008><pubmed>18160135</pubmed></ref><ref name=Levakova2019><pubmed>31387478</pubmed></ref> [18,19,20]。
<math></math>[ms] は時定数である。MATモデルは、膜電位が閾値に達したら、膜電位をリセットする代わりに閾値を上昇させるという点において積分発火モデルと異なる(図1)。このモデルは、わずか3つのパラメータで脳を構成する多様な発火パターンを再現する (図2)。MATモデルは、スパイクに着目した線形化近似を行うことで、HHモデルから導出することもできる<ref name=Kobayashi2016></ref> [16]。この解析により、速い時定数〜10 <math></math>[ms] は膜時定数、遅い時定数〜200 <math></math>[ms] は遅いカリウムイオン電流 (Mタイプ電流K+電流やCa2+活性化K+電流) に対 として指数関数を仮定し、膜電位をリセットするモデルもある<ref name=Liu2001><pubmed>11316338</pubmed></ref><ref name=Jolivet2008><pubmed>18160135</pubmed></ref><ref name=Levakova2019><pubmed>31387478</pubmed></ref> [18,19,20]。


  によって変動すると考えられる。Azouz とGray は in vivo 膜電位データを分析し、閾値が膜電位の微分に依存することを示した<ref name=Azouz2000><pubmed>10859358</pubmed></ref>[13]。また、膜電位の微分情報を活用することによって、HHモデルに対するスパイクの予測精度が向上することが示されている [21]。この結果は、HHモデルの閾値が膜電位の微分に依存することを示唆している。PlatkiewiczとBretteは、HHモデルの閾値は近似的に以下の式に従うことを示した<ref name=Platkiewicz2010><pubmed>20628619</pubmed></ref>[15]。 
  によって変動すると考えられる。Azouz とGray は in vivo 膜電位データを分析し、閾値が膜電位の微分に依存することを示した<ref name=Azouz2000><pubmed>10859358</pubmed></ref>[13]。また、膜電位の微分情報を活用することによって、HHモデルに対するスパイクの予測精度が向上することが示されている [21]。この結果は、HHモデルの閾値が膜電位の微分に依存することを示唆している。PlatkiewiczとBretteは、HHモデルの閾値は近似的に以下の式に従うことを示した<ref name=Platkiewicz2010><pubmed>20628619</pubmed></ref>[15]。 
67行目: 83行目:
スパイクと膜電位のどちらの影響も考慮に入れたモデルもある。山内らは、閾値の膜電位依存性を考慮に入れたMATモデルを提案した<ref name=Yamauchi2011><pubmed>22203798</pubmed></ref>[22]。
スパイクと膜電位のどちらの影響も考慮に入れたモデルもある。山内らは、閾値の膜電位依存性を考慮に入れたMATモデルを提案した<ref name=Yamauchi2011><pubmed>22203798</pubmed></ref>[22]。
(9)
(9)
  を持つ。このモデルは、実験データのスパイクを高精度に予測でき、かつ、Izhikevich モデルと同様に多様な神経細胞が持つ、さまざまな発火パターンを再現できる<ref name=Yamauchi2011></ref> [22]。
  を持つ。このモデルは、実験データのスパイクを高精度に予測でき、かつ、Izhikevichモデルと同様に多様な神経細胞が持つ、さまざまな発火パターンを再現できる<ref name=Yamauchi2011></ref> [22]。




86行目: 102行目:


神経細胞モデル間の比較
神経細胞モデル間の比較
これまで、積分発火モデルとその様々な拡張モデルについて紹介を行った。本節では、4つの神経細胞モデル (積分発火モデル、Izhikevichモデル、MATモデル、HHモデル) について比較を行い、モデルの特徴を整理する (表1)。
 これまで、積分発火モデルとその様々な拡張モデルについて紹介を行った。本節では、4つの神経細胞モデル (積分発火モデル、Izhikevichモデル、MATモデル、HHモデル) について比較を行い、モデルの特徴を整理する (表1)。
まず、モデルの再現性、つまり、数理モデルが実際の神経細胞の発火パターンを再現できるかどうかについて考えよう。モデルの再現性として、A. 似たような挙動を再現できる (定性的再現性)、B. 実験データを正確に予測できる (定量的再現性) の2つがある。積分発火モデルは、単純化されすぎているため、限られたタイプ (Fast Spiking 細胞) の発火パターンしか再現できない。Izhikevichモデル、MATモデルは、多様な神経細胞のさまざまな発火パターンを定性的に再現できる。MATモデルはスパイク予測の国際コンペで優勝するなど実験データを高精度に予測できる<ref name=Kobayashi2009></ref><ref name=Gerstner2009><pubmed>19833951</pubmed></ref> [17,25] 。Izhikevichモデルは分岐点近傍のモデルであるため、定量的予測には不向きである<ref name=Rossant2011><pubmed>21415925</pubmed></ref> [26]。HHモデルは、さまざまな発火パターンを定性的に再現できるものの、異なる細胞タイプをシミュレーションするにはイオン電流を調整する必要がある。この調整には専門知識と経験を必要とする。また、個別の実験データにフィットしたり予測したりすることは困難であることが多い。
 
 まず、モデルの再現性、つまり、数理モデルが実際の神経細胞の発火パターンを再現できるかどうかについて考えよう。モデルの再現性として、A. 似たような挙動を再現できる (定性的再現性)、B. 実験データを正確に予測できる (定量的再現性) の2つがある。積分発火モデルは、単純化されすぎているため、限られたタイプ (Fast Spiking 細胞) の発火パターンしか再現できない。Izhikevichモデル、MATモデルは、多様な神経細胞のさまざまな発火パターンを定性的に再現できる。MATモデルはスパイク予測の国際コンペで優勝するなど実験データを高精度に予測できる<ref name=Kobayashi2009></ref><ref name=Gerstner2009><pubmed>19833951</pubmed></ref> [17,25] 。Izhikevichモデルは分岐点近傍のモデルであるため、定量的予測には不向きである<ref name=Rossant2011><pubmed>21415925</pubmed></ref> [26]。HHモデルは、さまざまな発火パターンを定性的に再現できるものの、異なる細胞タイプをシミュレーションするにはイオン電流を調整する必要がある。この調整には専門知識と経験を必要とする。また、個別の実験データにフィットしたり予測したりすることは困難であることが多い。
次に、これらのモデルを脳のシミュレーション (数値計算) に使うことを考えよう。
次に、これらのモデルを脳のシミュレーション (数値計算) に使うことを考えよう。
大規模な神経回路をシミュレーションするためには、高速かつ正確に数値計算できることが望ましい。積分発火モデルとMATモデルは、膜電位と閾値を解析的に計算できるため<ref name=Yamauchi2011><pubmed>22203798</pubmed></ref>[22]、刻み幅や数値誤差の問題に悩むことなくシミュレーションを実行できる。Izhikevich モデルは HHモデルに比べると非線形性が弱いので高速に計算できるが、膜電位を解析的に計算できないため、刻み幅や数値誤差に注意をしつつシミュレーションを行う必要がある。
 
また、神経回路の理論的解析を行うためにはモデルがシンプルなことが望ましい。そのため、理論研究では積分発火モデルが使われることが多い。MATモデルの閾値変動は複雑であるものの、方程式自体は線形なのでそれほど困難ではないと予想される。IzhikevichモデルとHHモデルは非線形微分方程式であるため、解析は困難である。
 大規模な神経回路をシミュレーションするためには、高速かつ正確に数値計算できることが望ましい。積分発火モデルとMATモデルは、膜電位と閾値を解析的に計算できるため<ref name=Yamauchi2011><pubmed>22203798</pubmed></ref>[22]、刻み幅や数値誤差の問題に悩むことなくシミュレーションを実行できる。Izhikevich モデルは HHモデルに比べると非線形性が弱いので高速に計算できるが、膜電位を解析的に計算できないため、刻み幅や数値誤差に注意をしつつシミュレーションを行う必要がある。
最後に、モデルパラメータの解釈性について考えよう。HHモデルは、全てのパラメータがイオンチャネルと対応しているため、パラメータの解釈を行うことが容易である。その一方、積分発火モデルやIzhikevichモデルは単純化されすぎているため、パラメータの生理学的意味を解釈することはできない。このため、積分発火モデルやその拡張モデルは現象論的モデルと呼ばれることもある。MATモデルのパラメータは、複数のイオン電流の効果が合わさったものに対応している。このため、パラメータから遅いカリウム電流の有無などを解釈できるものの、イオン電流の詳細については解釈できない。
 
 また、神経回路の理論的解析を行うためにはモデルがシンプルなことが望ましい。そのため、理論研究では積分発火モデルが使われることが多い。MATモデルの閾値変動は複雑であるものの、方程式自体は線形なのでそれほど困難ではないと予想される。IzhikevichモデルとHHモデルは非線形微分方程式であるため、解析は困難である。
 
 最後に、モデルパラメータの解釈性について考えよう。HHモデルは、全てのパラメータがイオンチャネルと対応しているため、パラメータの解釈を行うことが容易である。その一方、積分発火モデルやIzhikevichモデルは単純化されすぎているため、パラメータの生理学的意味を解釈することはできない。このため、積分発火モデルやその拡張モデルは現象論的モデルと呼ばれることもある。MATモデルのパラメータは、複数のイオン電流の効果が合わさったものに対応している。このため、パラメータから遅いカリウム電流の有無などを解釈できるものの、イオン電流の詳細については解釈できない。