「積分発火モデル」の版間の差分

99行目: 99行目:
===Spike Response Model===
===Spike Response Model===
 変動電流<math>I(t)</math>が積分発火モデルに注入されている状況を考えよう。ニューロンは時刻<math>0</math>に発火し、その後時刻<math>t</math>まで発火しないとすると、膜電位は
 変動電流<math>I(t)</math>が積分発火モデルに注入されている状況を考えよう。ニューロンは時刻<math>0</math>に発火し、その後時刻<math>t</math>まで発火しないとすると、膜電位は
(10)
とした。式(10) を以下のように拡張したモデルはSpike Response Model (SRM) と呼ばれている<ref name=Gerstner2002>Gerstner, W. & Kistler, W.M. (2002). <br>Spiking neuron models: Single neurons, populations, plasticity., Cambridge: Cambridge University Press. [https://doi.org/10.1017/CBO9780511815706 PDF] </ref> [23] 。
(11)
はカーネルと呼ばれる関数である。カーネルがどちらも同じ時定数の指数関数であれば積分発火モデルとなる。SRMは Hodgikin-Huxleyモデルで観察されている共鳴特性 (特定の周波数の入力に発火しやすい性質) を再現できる。共鳴特性を再現するモデルとしてResonate-and-Fire モデル <ref name=Izhikevich2001><pubmed>11665779</pubmed></ref>[24] がよく知られているが、このモデルもSRMの特殊な場合となる。


::<math>V(t)=V_{reset}e^{-t/\tau{_m}}+\int_0^t I(t-s)e^{-s/\tau{_m}}ds</math> (10)


神経細胞モデル間の比較
と書ける。表記を単純にするため、<math>E_L=0</math>とした。式(10) を以下のように拡張したモデルはSpike Response Model (SRM) と呼ばれている<ref name=Gerstner2002>Gerstner, W. & Kistler, W.M. (2002). <br>Spiking neuron models: Single neurons, populations, plasticity., Cambridge: Cambridge University Press. [https://doi.org/10.1017/CBO9780511815706 PDF] </ref> [23] 。
 
::<math>V(t)=\eta(t)+\int_0^t \kappa(s)I(t-s)ds</math> ((11)
 
<math>\eta(t)</math>, <math>\kappa(s)</math>はカーネルと呼ばれる関数である。カーネルがどちらも同じ時定数の指数関数であれば積分発火モデルとなる。Spike Response Modelは Hodgikin-Huxleyモデルで観察されている共鳴特性 (特定の周波数の入力に発火しやすい性質) を再現できる。共鳴特性を再現するモデルとしてResonate-and-Fireモデル <ref name=Izhikevich2001><pubmed>11665779</pubmed></ref>[24] がよく知られているが、このモデルもSpike Response Modelの特殊な場合となる。
 
==神経細胞モデル間の比較==
 これまで、積分発火モデルとその様々な拡張モデルについて紹介を行った。本節では、4つの神経細胞モデル (積分発火モデル、Izhikevichモデル、Multi-timescale Adaptive Thresholdモデル、Hodgikin-Huxleyモデル) について比較を行い、モデルの特徴を整理する (表1)。
 これまで、積分発火モデルとその様々な拡張モデルについて紹介を行った。本節では、4つの神経細胞モデル (積分発火モデル、Izhikevichモデル、Multi-timescale Adaptive Thresholdモデル、Hodgikin-Huxleyモデル) について比較を行い、モデルの特徴を整理する (表1)。


 まず、モデルの再現性、つまり、数理モデルが実際の神経細胞の発火パターンを再現できるかどうかについて考えよう。モデルの再現性として、A. 似たような挙動を再現できる (定性的再現性)、B. 実験データを正確に予測できる (定量的再現性) の2つがある。積分発火モデルは、単純化されすぎているため、限られたタイプ (Fast Spiking 細胞) の発火パターンしか再現できない。Izhikevichモデル、Multi-timescale Adaptive Thresholdモデルは、多様な神経細胞のさまざまな発火パターンを定性的に再現できる。Multi-timescale Adaptive Thresholdモデルはスパイク予測の国際コンペで優勝するなど実験データを高精度に予測できる<ref name=Kobayashi2009></ref><ref name=Gerstner2009><pubmed>19833951</pubmed></ref> [17,25] 。Izhikevichモデルは分岐点近傍のモデルであるため、定量的予測には不向きである<ref name=Rossant2011><pubmed>21415925</pubmed></ref> [26]。Hodgikin-Huxleyモデルは、さまざまな発火パターンを定性的に再現できるものの、異なる細胞タイプをシミュレーションするにはイオン電流を調整する必要がある。この調整には専門知識と経験を必要とする。また、個別の実験データにフィットしたり予測したりすることは困難であることが多い。
 まず、モデルの再現性、つまり、数理モデルが実際の神経細胞の発火パターンを再現できるかどうかについて考えよう。モデルの再現性として、
次に、これらのモデルを脳のシミュレーション (数値計算) に使うことを考えよう。
 
* 似たような挙動を再現できる (定性的再現性)
* 実験データを正確に予測できる (定量的再現性)
 
 の2つがある。積分発火モデルは、単純化されすぎているため、限られたタイプ (Fast Spiking細胞) の発火パターンしか再現できない。Izhikevichモデル、Multi-timescale Adaptive Thresholdモデルは、多様な神経細胞のさまざまな発火パターンを定性的に再現できる。Multi-timescale Adaptive Thresholdモデルはスパイク予測の国際コンペで優勝するなど実験データを高精度に予測できる<ref name=Kobayashi2009></ref><ref name=Gerstner2009><pubmed>19833951</pubmed></ref> [17,25] 。Izhikevichモデルは分岐点近傍のモデルであるため、定量的予測には不向きである<ref name=Rossant2011><pubmed>21415925</pubmed></ref> [26]。Hodgikin-Huxleyモデルは、さまざまな発火パターンを定性的に再現できるものの、異なる細胞タイプをシミュレーションするにはイオン電流を調整する必要がある。この調整には専門知識と経験を必要とする。また、個別の実験データにフィットしたり予測したりすることは困難であることが多い。
 
 次に、これらのモデルを脳のシミュレーション (数値計算) に使うことを考えよう。


 大規模な神経回路をシミュレーションするためには、高速かつ正確に数値計算できることが望ましい。積分発火モデルとMulti-timescale Adaptive Thresholdモデルは、膜電位と閾値を解析的に計算できるため<ref name=Yamauchi2011><pubmed>22203798</pubmed></ref>[22]、刻み幅や数値誤差の問題に悩むことなくシミュレーションを実行できる。Izhikevich モデルは Hodgikin-Huxleyモデルに比べると非線形性が弱いので高速に計算できるが、膜電位を解析的に計算できないため、刻み幅や数値誤差に注意をしつつシミュレーションを行う必要がある。
 大規模な神経回路をシミュレーションするためには、高速かつ正確に数値計算できることが望ましい。積分発火モデルとMulti-timescale Adaptive Thresholdモデルは、膜電位と閾値を解析的に計算できるため<ref name=Yamauchi2011><pubmed>22203798</pubmed></ref>[22]、刻み幅や数値誤差の問題に悩むことなくシミュレーションを実行できる。Izhikevichモデルは Hodgikin-Huxleyモデルに比べると非線形性が弱いので高速に計算できるが、膜電位を解析的に計算できないため、刻み幅や数値誤差に注意をしつつシミュレーションを行う必要がある。


 また、神経回路の理論的解析を行うためにはモデルがシンプルなことが望ましい。そのため、理論研究では積分発火モデルが使われることが多い。Multi-timescale Adaptive Thresholdモデルの閾値変動は複雑であるものの、方程式自体は線形なのでそれほど困難ではないと予想される。IzhikevichモデルとHodgikin-Huxleyモデルは非線形微分方程式であるため、解析は困難である。
 また、神経回路の理論的解析を行うためにはモデルがシンプルなことが望ましい。そのため、理論研究では積分発火モデルが使われることが多い。Multi-timescale Adaptive Thresholdモデルの閾値変動は複雑であるものの、方程式自体は線形なのでそれほど困難ではないと予想される。IzhikevichモデルとHodgikin-Huxleyモデルは非線形微分方程式であるため、解析は困難である。