「シナプスタグ仮説」の版間の差分

編集の要約なし
5行目: 5行目:
==狭義のシナプスタグ仮説 ==
==狭義のシナプスタグ仮説 ==


 狭義のシナプスタグ仮説は、FreyとMorrisの行った二経路実験における連合性後期長期増強の成立を説明するための仮説である<ref name=ref1><pubmed>9020359</pubmed></ref> <ref name=ref2><pubmed>9610879</pubmed></ref>。二経路実験とは、[[wikipedia:ja:ラット|ラット]][[海馬]]急性[[wikipedia:ja:切片|切片]]で[[CA1]]野[[Schaffer側枝]]を二箇所刺激し、独立した二経路の[[集合シナプス電位]]を一つの記録電極から測定する手法である(図1)。  
 狭義のシナプスタグ仮説は、FreyとMorrisの行った二経路実験における連合性後期長期増強の成立を説明するための仮説である<ref name=ref1><pubmed>9020359</pubmed></ref> <ref name=ref2><pubmed>9610879</pubmed></ref>。二経路実験とは、[[wikipedia:ja:ラット|ラット]][[海馬]]急性[[脳スライス標本|切片]]で[[CA1]]野[[Schaffer側枝]]を二箇所刺激し、独立した二経路の[[集合シナプス電位]]を一つの記録電極から測定する手法である(図1)。  


[[Image:図1二経路実験.jpg|thumb|500px|'''図1.二経路実験の配置'''<br>海馬急性切片に刺激電極S1S2と記録電極Rを置く。]]
[[Image:図1二経路実験.jpg|thumb|500px|'''図1 二経路実験の配置'''<br>海馬急性切片に刺激電極S1S2と記録電極Rを置く。]]


 一方の刺激電極S1に長く持続する[[後期長期増強]]を起こす電気刺激を与えた後、他方の刺激電極S2から持続の短い初期長期増強を起こす刺激を与えた。S1経路では予想通り入力特異的な後期長期増強が見られた。一方S2経路には、予想(初期長期増強が起きる)に反して後期長期増強が見られた(図2)。S2の変化は連合性後期長期増強と呼ばれる。
 一方の刺激電極S1に長く持続する[[後期長期増強]]を起こす電気刺激を与えた後、他方の刺激電極S2から持続の短い初期長期増強を起こす刺激を与えた。S1経路では予想通り入力特異的な後期長期増強が見られた。一方S2経路には、予想(初期長期増強が起きる)に反して後期長期増強が見られた(図2)。S2の変化は[[連合性]]後期長期増強と呼ばれる。


[[Image:図2連合性後期可塑性.jpg|thumb|600px|'''図2. 連合性後期可塑性'''<br>太矢印でS1に後期可塑性を起こす刺激、細矢印でS2に初期可塑性を起こす刺激を与えた。S1の集合シナプス後電位の時間変化が実線、S2のものが破線。]]
[[Image:図2連合性後期可塑性.jpg|thumb|600px|'''図2 連合性後期可塑性'''<br>太矢印でS1に後期可塑性を起こす刺激、細矢印でS2に初期可塑性を起こす刺激を与えた。S1の集合シナプス後電位の時間変化が実線、S2のものが破線。]]


 長期記憶の細胞機構とされる後期可塑性の成立には、長期記憶同様に、新規タンパク質の合成が必要である。これらの新規タンパク質がシナプス部で示す機能により後期可塑性が発現すると考えられる。細胞体で新規合成されたタンパク質がシナプス部で入力依存的に機能するためには、入力を受けたシナプス特異的に新規タンパク質が機能する仕組み、即ち後期可塑性の入力特異性機構、が必要である。図2の実験は、S1だけでなくS2刺激を受けたシナプスでも入力特異性機構が作動したことを示している。FreyとMorrisは連合性後期長期増強を起こす仕組みとして主に次の三つの可能性を検討し、シナプスタグ仮説が結果をうまく説明すると提唱した<ref name=ref1><pubmed>9020359</pubmed></ref> <ref name=ref2><pubmed>9610879</pubmed></ref>。<br>  
 長期記憶の細胞機構とされる後期可塑性の成立には、長期記憶同様に、新規タンパク質の合成が必要である。これらの新規タンパク質がシナプス部で示す機能により後期可塑性が発現すると考えられる。細胞体で新規合成されたタンパク質がシナプス部で入力依存的に機能するためには、入力を受けたシナプス特異的に新規タンパク質が機能する仕組み、即ち後期可塑性の入力特異性機構、が必要である。図2の実験は、S1だけでなくS2刺激を受けたシナプスでも入力特異性機構が作動したことを示している。FreyとMorrisは連合性後期長期増強を起こす仕組みとして主に次の三つの可能性を検討し、シナプスタグ仮説が結果をうまく説明すると提唱した<ref name=ref1><pubmed>9020359</pubmed></ref> <ref name=ref2><pubmed>9610879</pubmed></ref>。<br>  
19行目: 19行目:
#シナプスタグ仮説。細胞体で新規合成された後期可塑性関連タンパク質が機能できるシナプスでは、何らかの生化学的活性が活性化しており、この活性によって後期長期増強の発現が可能になる。この仮想活性をシナプスタグと呼ぶ。<br>  
#シナプスタグ仮説。細胞体で新規合成された後期可塑性関連タンパク質が機能できるシナプスでは、何らかの生化学的活性が活性化しており、この活性によって後期長期増強の発現が可能になる。この仮想活性をシナプスタグと呼ぶ。<br>  


 二経路実験で、S1に後期長期増強を起こす刺激を与えた後、タンパク質合成を阻害した状態でS2に初期長期増強を起こす刺激を与えた場合も、両経路に後期長期増強が見られた(図3)。つまり、S2シナプス近傍の局所合成は不要であること、及び、S1刺激で合成されたタンパク質がS2シナプスに運ばれたことを示している。細胞体で合成されたタンパク質は全てのシナプスに使用のチャンスがある状態で輸送されることになるので、メイル仮説は否定される。一方、シナプスタグ仮説によれば、細胞体で合成されたシナプスタンパク質は輸送途上では目的地を持たず全ての樹状突起を輸送されており、シナプスタグが活性化したシナプスに取り込まれて機能する。この実験結果は、S1とS2の両シナプスではシナプスタグが活性化しているので新規合成タンパク質が機能し後期可塑性が発現したと説明できる。FreyとMorrisらは更にS1とS2の順番を入れ替える実験を行い、S2の弱い刺激の後でタンパク合成を起こしても連合性後期長期増強が起きることも見出した<ref name=ref4><pubmed>9704995</pubmed></ref>。  
 二経路実験で、S1に後期長期増強を起こす刺激を与えた後、タンパク質合成を阻害した状態でS2に初期長期増強を起こす刺激を与えた場合も、両経路に後期長期増強が見られた(図3)。つまり、S2シナプス近傍の局所合成は不要であること、及び、S1刺激で合成されたタンパク質がS2シナプスに運ばれたことを示している。細胞体で合成されたタンパク質は全てのシナプスに使用のチャンスがある状態で輸送されることになるので、メイル仮説は否定される。
 
 一方、シナプスタグ仮説によれば、細胞体で合成されたシナプスタンパク質は輸送途上では目的地を持たず全ての樹状突起を輸送されており、シナプスタグが活性化したシナプスに取り込まれて機能する。この実験結果は、S1とS2の両シナプスではシナプスタグが活性化しているので新規合成タンパク質が機能し後期可塑性が発現したと説明できる。FreyとMorrisらは更にS1とS2の順番を入れ替える実験を行い、S2の弱い刺激の後でタンパク合成を起こしても連合性後期長期増強が起きることも見出した<ref name=ref4><pubmed>9704995</pubmed></ref>。  


[[Image:図3シナプスタグ仮説.jpg|thumb|600px|'''図3.'''四角の時点でタンパク質合成阻害剤を与えてもS1S2経路ともに後期可塑性がおきた。この結果はシナプスタグ仮説を支持する。]]
[[Image:図3シナプスタグ仮説.jpg|thumb|600px|'''図3.'''四角の時点でタンパク質合成阻害剤を与えてもS1S2経路ともに後期可塑性がおきた。この結果はシナプスタグ仮説を支持する。]]
25行目: 27行目:
 以上から、後期可塑性の入力特異性機構としてシナプスタグ仮説が有力視され、シナプスタグは以下の性質を持つと思われた<ref name=ref2><pubmed>9610879</pubmed></ref>。  
 以上から、後期可塑性の入力特異性機構としてシナプスタグ仮説が有力視され、シナプスタグは以下の性質を持つと思われた<ref name=ref2><pubmed>9610879</pubmed></ref>。  


#初期可塑性が起きたシナプスで[[NMDA受容体]]依存的かつ入力特異的に活性化される。 <br>
#初期可塑性が起きたシナプスで[[NMDA受容体]]依存的かつ入力特異的に活性化される。  
#細胞体で新規合成されたタンパク質はシナプスタグの活性化されたシナプスでのみ機能できる。<br>
#細胞体で新規合成されたタンパク質はシナプスタグの活性化されたシナプスでのみ機能できる。  
#細胞体で新規合成されたタンパク質は目的地を持たずに樹状突起を輸送される。 <br>
#細胞体で新規合成されたタンパク質は目的地を持たずに樹状突起を輸送される。  
#シナプスタグの活性化にはタンパク質合成は不要である。<br>
#シナプスタグの活性化にはタンパク質合成は不要である。
#シナプスタグは一度活性化されるとしばらく活性を保つ。 <br>
#シナプスタグは一度活性化されるとしばらく活性を保つ。


 シナプスタグ仮説の実証のために、ラット海馬培養神経細胞において仮説が示唆するような動きをするタンパク質があるかどうか調べた。すると、[[細胞体]]を出発した[[Vesl-1S]] ([[Homer]]-1a) タンパク質は全ての樹状突起を輸送されるがスパイン内には入らず、NMDA受容体刺激があったシナプスにだけ入ることが観察された<ref name=ref3><pubmed>19443779</pubmed></ref>。Vesl-1Sは後期長期増強時に細胞体で発現誘導されるタンパク質で、シナプス部long-form Veslタンパク質が作るネットワークを壊すことでシナプス可塑性を起こすきっかけを作るとされる[[最初期遺伝子産物]]である<ref name=ref5><pubmed>18006237</pubmed></ref>。Vesl-1Sタンパク質の樹状突起からスパイン内への移動がシナプス入力により制御されていることはシナプスタグの上記性質を全て満たしており、シナプスタグという仕組みが実証された。しかし、シナプスタグの分子的実体や、活性化のシグナル等は不明なままである。
 シナプスタグ仮説の実証のために、ラット海馬[[初代培養|培養]]神経細胞において仮説が示唆するような動きをするタンパク質があるかどうか調べた。すると、[[細胞体]]を出発した[[Vesl-1S]] ([[Homer]]1a) タンパク質は全ての樹状突起を輸送されるがスパイン内には入らず、[[NMDA型グルタミン酸受容体]]刺激があったシナプスにだけ入ることが観察された<ref name=ref3><pubmed>19443779</pubmed></ref>。Vesl-1Sは後期長期増強時に細胞体で発現誘導されるタンパク質で、シナプス部long-form Veslタンパク質が作るネットワークを壊すことでシナプス可塑性を起こすきっかけを作るとされる[[最初期遺伝子産物]]である<ref name=ref5><pubmed>18006237</pubmed></ref>。Vesl-1Sタンパク質の樹状突起からスパイン内への移動がシナプス入力により制御されていることはシナプスタグの上記性質を全て満たしており、シナプスタグという仕組みが実証された。しかし、シナプスタグの分子的実体や、活性化のシグナル等は不明なままである。


 二経路実験は更に、連合性後期可塑性成立に関与する分子として、[[PKM zeta]]<ref name=ref6><pubmed>15958741</pubmed></ref>、[[PKA]]、[[MEK1/2]]、[[CaMKⅡ]]<ref name=ref7><pubmed>17494693</pubmed></ref>、[[neuropsin]] <ref name=ref8><pubmed>18216192</pubmed></ref> など明らかにした。一般に後期可塑性は、少なくとも、先行する初期可塑性、新規タンパク質合成、シナプスタグ機構、シナプス部での新規タンパク質の機能発現等の複数の内部過程により起きると考えられている。二経路実験ではこれら複数の過程を経た最終結果である連合性可塑性の有無を測定するので、ある分子が連合性後期可塑性に必要だとしても、それがシナプスタグの仕組みに関与するかどうかを二経路実験から決定することはできない。この問題はシナプスタグの定義や後期可塑性の表現機構に直結しており、現時点ではこの区別は難しい。 細胞体で合成され樹状突起を非特異的に輸送されるタンパク質は、シナプス部での機能に先立ってシナプスに取り込まれる (capture)。この二つの過程を分けてsynaptic tagging and capture という語が用いられることがある。<ref name=ref3><pubmed>19443779</pubmed></ref>の結果は、Capture が入力特異的に起きるということなので、capture がtaggingの機能を持つとも言える。一方、captureされたタンパク質が機能して可塑性を起こすために、シナプス部、特にPSD部の分子集合体の修飾が必要ならば、この修飾もシナプスタグである。Frey とMorrisの初期の実験で考えられたsensitization 仮説はこの方向の考え方であった<ref name=ref4><pubmed>9704995</pubmed></ref>。
 二経路実験は更に、連合性後期可塑性成立に関与する分子として、[[PKM zeta]]<ref name=ref6><pubmed>15958741</pubmed></ref>、[[PKA]]、[[MEK1/2]]、[[CaMKⅡ]]<ref name=ref7><pubmed>17494693</pubmed></ref>、[[neuropsin]] <ref name=ref8><pubmed>18216192</pubmed></ref> など明らかにした。一般に後期可塑性は、少なくとも、先行する初期可塑性、新規タンパク質合成、シナプスタグ機構、シナプス部での新規タンパク質の機能発現等の複数の内部過程により起きると考えられている。二経路実験ではこれら複数の過程を経た最終結果である連合性可塑性の有無を測定するので、ある分子が連合性後期可塑性に必要だとしても、それがシナプスタグの仕組みに関与するかどうかを二経路実験から決定することはできない。この問題はシナプスタグの定義や後期可塑性の表現機構に直結しており、現時点ではこの区別は難しい。 細胞体で合成され樹状突起を非特異的に輸送されるタンパク質は、シナプス部での機能に先立ってシナプスに取り込まれる (capture)。この二つの過程を分けてsynaptic tagging and capture という語が用いられることがある。<ref name=ref3><pubmed>19443779</pubmed></ref>の結果は、Capture が入力特異的に起きるということなので、capture がtaggingの機能を持つとも言える。一方、captureされたタンパク質が機能して可塑性を起こすために、シナプス部、特に[[シナプス後膜肥厚]](PSD)の分子集合体の修飾が必要ならば、この修飾もシナプスタグである。Frey とMorrisの初期の実験で考えられたsensitization 仮説はこの方向の考え方であった<ref name=ref4><pubmed>9704995</pubmed></ref>。


 後期可塑性に伴って新規に発現誘導される遺伝子は少なくとも 100 近くに及ぶ<ref name=ref9><pubmed>10820183</pubmed></ref>。新規タンパク質の機能やシナプス部への局在・活性化の機構はタンパク質毎に異なるだろうから、シナプスタグはタンパク質毎に異なる仕組みである可能性が考えられる。局所合成によりシナプス内の環境が調節された後に、最初期遺伝子産物群、さらに遅れてやってくる遺伝子産物群などが作用することで可塑性が起きると考えれば、captureとtaggingは入れ子構造になるので厳密に区別できないのではないだろうか。  
 後期可塑性に伴って新規に発現誘導される遺伝子は少なくとも 100 近くに及ぶ<ref name=ref9><pubmed>10820183</pubmed></ref>。新規タンパク質の機能やシナプス部への局在・活性化の機構はタンパク質毎に異なるだろうから、シナプスタグはタンパク質毎に異なる仕組みである可能性が考えられる。局所合成によりシナプス内の環境が調節された後に、最初期遺伝子産物群、さらに遅れてやってくる遺伝子産物群などが作用することで可塑性が起きると考えれば、captureとtaggingは入れ子構造になるので厳密に区別できないのではないだろうか。


==シナプスタグ仮説の広がり ==
==シナプスタグ仮説の広がり ==