「トポグラフィックマッピング」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
3行目: 3行目:
 トポグラフィックファインチューニングは2つの分けることのできる概念を含んでいる言葉と考えられる。1つはトポグラフィックマッピング、topographic mappingで、もう1つはその過程の1つである神経活動依存性ファインチューニング、activity dependent fine tuningである。ここではトポグラフィックマッピングについて主に述べることにする。トポグラフィックマップとはもともと地形図という意味であるが、トポグラフィックマッピングは「神経地図形成」と訳され、神経細胞の投射が地形図を作製するように特異的な配置をなす過程をさす。端的に言えばある特定の身体の位置から来る神経の軸索が、ある特定の配置をその系路内で取り、脳内のある特定の標的に到達した際に、その投射が標的領域内で特定の配置を取る過程である(逆に脳の運動野のある位置にある神経細胞からの軸索がある特定の身体の位置に投射する場合、脳内の運動野でトポグラフィックな分布があるといえる)。一番簡単な例は、脊髄から視床へ上行する脊髄視床路で末梢から脊髄に入る高さによってその系路内での配置が決まるというものであろう。また、有名なものにはWilder Penfieldによる感覚野と運動野におけるどの部位が体のどの部位の感覚、運動に対応するかを人の脳でマッピングしたものがある(cortical homunculus)(図1)。これは脳のどこを刺激すると体のどこが動くか、また、脳のどこを刺激するとどこが感じたように感じるかを脳外科手術中の患者さんの脳でマッピングしたもので、1951年に出版されたこのデータは現在でもそのまま通用する正確なものである。感覚系のトポグラフィックマッピングには大きく分けて2つの過程がある。一つは神経細胞の軸索が標的にたどり着き標的内でトポグラフィックに配置する神経活動に依存しない(おそらく様々な標的認識分子による)メカニズムで、もう一つはその後に行われる標的内での神経活動依存性の配置形成の(ついてはシナプス形成の)リファインメントの過程である(これが神経活動依存性ファインチューニングである)。トポグラフィクマッピングは感覚系での情報処理の基本となる構造を形成するものである。
 トポグラフィックファインチューニングは2つの分けることのできる概念を含んでいる言葉と考えられる。1つはトポグラフィックマッピング、topographic mappingで、もう1つはその過程の1つである神経活動依存性ファインチューニング、activity dependent fine tuningである。ここではトポグラフィックマッピングについて主に述べることにする。トポグラフィックマップとはもともと地形図という意味であるが、トポグラフィックマッピングは「神経地図形成」と訳され、神経細胞の投射が地形図を作製するように特異的な配置をなす過程をさす。端的に言えばある特定の身体の位置から来る神経の軸索が、ある特定の配置をその系路内で取り、脳内のある特定の標的に到達した際に、その投射が標的領域内で特定の配置を取る過程である(逆に脳の運動野のある位置にある神経細胞からの軸索がある特定の身体の位置に投射する場合、脳内の運動野でトポグラフィックな分布があるといえる)。一番簡単な例は、脊髄から視床へ上行する脊髄視床路で末梢から脊髄に入る高さによってその系路内での配置が決まるというものであろう。また、有名なものにはWilder Penfieldによる感覚野と運動野におけるどの部位が体のどの部位の感覚、運動に対応するかを人の脳でマッピングしたものがある(cortical homunculus)(図1)。これは脳のどこを刺激すると体のどこが動くか、また、脳のどこを刺激するとどこが感じたように感じるかを脳外科手術中の患者さんの脳でマッピングしたもので、1951年に出版されたこのデータは現在でもそのまま通用する正確なものである。感覚系のトポグラフィックマッピングには大きく分けて2つの過程がある。一つは神経細胞の軸索が標的にたどり着き標的内でトポグラフィックに配置する神経活動に依存しない(おそらく様々な標的認識分子による)メカニズムで、もう一つはその後に行われる標的内での神経活動依存性の配置形成の(ついてはシナプス形成の)リファインメントの過程である(これが神経活動依存性ファインチューニングである)。トポグラフィクマッピングは感覚系での情報処理の基本となる構造を形成するものである。


図1
図1Cortical homunculus それぞれの皮質の領域がそれぞれの身体の部分の感覚に対応している。Wilder Penfieldの著書より改変。




21行目: 21行目:
 その流れを汲んで、その後視覚系を中心にトポグラフィックマッピングのメカニズムを追求する努力がなされた。ニワトリの眼において耳側と鼻側の網膜神経節細胞はそれぞれ視蓋の前側と後側に軸索を送り、眼の中の耳鼻軸に沿った位置情報は視蓋の中で前後軸として保存される(図1)。これは眼の中で網膜神経節細胞に耳側と鼻側に軸に沿った分子の濃度勾配があり、それに対応する分子の濃度勾配が標的である視蓋の前後軸にもあり、その相互作用によって、それぞれの網膜神経節細胞の軸索が視蓋で停止する場所が決定されると考えられた。Friedrich Bonhoefferのグループは生化学的に視蓋での物質的基盤を明らかにすべく以下の様な実験を行った。彼らは、もし、視蓋に前後軸で濃度勾配を呈して発現している物質があってそれが耳側と鼻側の網膜神経節細胞の軸索のターゲッティングに重要であるならば、視蓋の前側と後側から調整した膜画分に対する耳側と鼻側の網膜神経節細胞の軸索の反応が変わるであろうと考え、これらの膜画分をインビトロでの基質としてストライプ状に配置した(ストライプアッセイ)。その上で網膜の神経節細胞を培養すると、耳側の細胞の軸索は前側から調整した膜画分の上を好んで成長するのに対して、鼻側の細胞の軸索は前側と後側からの画分で差を示さない事、そして、前側と後側のストライプをそれぞれ熱処理することによって、耳側の軸索は特に前側の膜画分を好むわけではなく、実は後側の膜画分を避ける事が示された(図3)。この事は視蓋の後側に高く前側に低く発現されている物質があり、それが耳側で強く発現し鼻側で弱く発現する分子によって認識される事によって網膜神経節細胞の軸索の視蓋内での位置が決まるという事を示唆する(図2)<ref><pubmed>3503693</pubmed></ref><ref><pubmed>3503703</pubmed></ref>。
 その流れを汲んで、その後視覚系を中心にトポグラフィックマッピングのメカニズムを追求する努力がなされた。ニワトリの眼において耳側と鼻側の網膜神経節細胞はそれぞれ視蓋の前側と後側に軸索を送り、眼の中の耳鼻軸に沿った位置情報は視蓋の中で前後軸として保存される(図1)。これは眼の中で網膜神経節細胞に耳側と鼻側に軸に沿った分子の濃度勾配があり、それに対応する分子の濃度勾配が標的である視蓋の前後軸にもあり、その相互作用によって、それぞれの網膜神経節細胞の軸索が視蓋で停止する場所が決定されると考えられた。Friedrich Bonhoefferのグループは生化学的に視蓋での物質的基盤を明らかにすべく以下の様な実験を行った。彼らは、もし、視蓋に前後軸で濃度勾配を呈して発現している物質があってそれが耳側と鼻側の網膜神経節細胞の軸索のターゲッティングに重要であるならば、視蓋の前側と後側から調整した膜画分に対する耳側と鼻側の網膜神経節細胞の軸索の反応が変わるであろうと考え、これらの膜画分をインビトロでの基質としてストライプ状に配置した(ストライプアッセイ)。その上で網膜の神経節細胞を培養すると、耳側の細胞の軸索は前側から調整した膜画分の上を好んで成長するのに対して、鼻側の細胞の軸索は前側と後側からの画分で差を示さない事、そして、前側と後側のストライプをそれぞれ熱処理することによって、耳側の軸索は特に前側の膜画分を好むわけではなく、実は後側の膜画分を避ける事が示された(図3)。この事は視蓋の後側に高く前側に低く発現されている物質があり、それが耳側で強く発現し鼻側で弱く発現する分子によって認識される事によって網膜神経節細胞の軸索の視蓋内での位置が決まるという事を示唆する(図2)<ref><pubmed>3503693</pubmed></ref><ref><pubmed>3503703</pubmed></ref>。


 上記のアッセイを利用してBonhoefferのグループは1990年に生化学的にニワトリの視蓋の後側に発現している分子を精製した。RAGSと呼ばれたこの分子はPI-PLC処理によって膜から外れることからGPI結合性の膜結合タンパク質であることがわかっていた。その後、彼のグループのUwe Drescherらが遺伝子クローニングを含めて更なる分子の同定を試みていた。その頃、ファミリーの非常に多い新しいチロシンキナーゼ分子が同定され、それについての研究が様々なグループで行われていた。中でもレジェネロンのGeorge Yancopoulosのグループはこのキナーゼのファミリーの同定とそのリガンドの解明を行っていた。Phil Leaderの弟子にあたるJohn Flanaganもハーバードに自分のラボを持った頃で、彼のプロジェクトの一つとしてMek4(EphA3にあたる)とよばれるキナーゼ対するリガンドの発現クローニングを行っていた。それでとれてきた分子がELF-1(ephrinA2にあたる)で1994年にこの分子は膜結合型のタンパク質であることがわかっていた。その時にMek4とELF-1が網膜と視蓋で濃度購買を呈して発現しており、しかもその勾配が逆であることに気がついた彼のグループは1995年にこのEphA3-ephrinA2の相互作用を介した分子メカニズムがBonhoefferのグループが解析を行ってきたSperryのchemoaffnity theoryに関与するものであるという論文を発表した。その論文はDrescherらのRAGSがephrinAであるという論文と同時に発表されている。その後、様々なグループ(Rudiger KleinやDennis O'learyら)も参画しニワトリだけでなくマウスでもこのEph-ephrinを介したメカニズムがchemoaffinityに働いていることが証明された。
 上記のアッセイを利用してBonhoefferのグループは1990年に生化学的にニワトリの視蓋の後側に発現している分子を精製した。RAGSと呼ばれた25kDaのこの分子はPI-PLC処理によって膜から外れることからGPI結合性の膜結合タンパク質であることがわかっていた。その後、彼のグループのUwe Drescherらが遺伝子クローニングを含めて更なる分子の同定を試みていた。その頃、ファミリーの非常に多い新しいチロシンキナーゼ分子(後にEphとよばれる)が同定され、それについての研究が様々なグループで行われていた。中でもレジェネロンのGeorge Yancopoulosのグループはこのキナーゼ(Ephにあたる)のファミリーの同定とそのリガンド(ephrinにあたる)の解明を行っていた。Phil Leaderの弟子にあたるJohn Flanaganもハーバードに自分のラボを持った頃で、彼のプロジェクトの一つとしてMek4(EphA3にあたる)とよばれるキナーゼ対するリガンドの発現クローニングを行っていた。それでとれてきた分子がELF-1(ephrinA2にあたる)で1994年にこの分子は膜結合型のタンパク質であることがわかっていた。その時にMek4とELF-1が網膜と視蓋で濃度勾配を呈して発現しており、しかもその勾配が逆であることに気がついた彼のグループは1995年にこのEphA3-ephrinA2がBonhoefferのグループが解析を行ってきたSperryのchemoaffnity theoryに関与するものであるという論文を発表した。その論文はDrescherらのRAGSがephrinAであるという論文と同時に発表されている。その後、様々なグループ(Rudiger KleinやDennis O'learyら)も参画しニワトリだけでなくマウスでもこのEph-ephrinを介したメカニズムが視覚系におけるトポグラフィックマッピングに働いていることが証明された。


図3
図3 ストライプアッセイによる視蓋の前側と後側で網膜神経節細胞の軸索に対する影響の違い




36行目: 36行目:


 この他にも、外側膝状体と大脳皮質の視覚野でもトポグラフィックマップは形成されているがその分子メカニズムは視蓋/上丘ほどは明らかにされていない。  
 この他にも、外側膝状体と大脳皮質の視覚野でもトポグラフィックマップは形成されているがその分子メカニズムは視蓋/上丘ほどは明らかにされていない。  
== 臨界期==
 トポグラフィックマップの形成後はそれを変えることは難しいが、形成の前に脳の領域ごとに[[可塑性]]が持続する時期があり、それを[[臨界期]]と呼ぶ。この時期は神経活動依存的な修飾が可能な時期であり、この時期内での神経活動の変化は脳内でのマップのパターンを変えることができる。
==視覚優位性円柱 ==
 視覚中枢において片方の眼ともう片方の眼からの刺激を受ける領域が交互に存在し、ストライプ状に配置されている。このストライプをocular dominance columnという。通常は片方の眼ともう片方の眼のそれぞれのカラムは同じ大きさである。このストライプの形成にも神経活動が必要であり、臨界期における神経活動の変化はこのストライプ(すなわちトポグラフィカルマップ)のパターンを変える(例えば右目と左目のカラムでサイズが変わる)。


[[Image:脳科学事典05.jpg|thumb|right|250px|'''図3 嗅覚系におけるトポグラフィックマップ形成の過程の模式図'''<br>嗅球の前後軸に沿ったトポグラフィーは、嗅上皮細胞で発現されているオルファクトリーレセプターの違いによって形成されるSema3A/Neuropilin1の発現の差によって嗅球に達する前にソーティングされる。嗅球の背側腹側軸に沿ったトポグラフィーは、まず最初に嗅球に到着する線維の配置がrobo2/slit1のは告げんパターンによって背側に決定された後、その軸索内で発現の高いSema3Fによって、後から到着するNeuropilin2を強く発現する線維の位置を腹側に規定する。その後、神経活動に依存して嗅上皮細胞内で接着因子や反発因子の発現が制御され、それによって糸球体がきっちりとセグレゲートする。]]  
[[Image:脳科学事典05.jpg|thumb|right|250px|'''図3 嗅覚系におけるトポグラフィックマップ形成の過程の模式図'''<br>嗅球の前後軸に沿ったトポグラフィーは、嗅上皮細胞で発現されているオルファクトリーレセプターの違いによって形成されるSema3A/Neuropilin1の発現の差によって嗅球に達する前にソーティングされる。嗅球の背側腹側軸に沿ったトポグラフィーは、まず最初に嗅球に到着する線維の配置がrobo2/slit1のは告げんパターンによって背側に決定された後、その軸索内で発現の高いSema3Fによって、後から到着するNeuropilin2を強く発現する線維の位置を腹側に規定する。その後、神経活動に依存して嗅上皮細胞内で接着因子や反発因子の発現が制御され、それによって糸球体がきっちりとセグレゲートする。]]  
49行目: 57行目:
 その他、聴覚系、体性感覚系、運動系などのトポグラフィックマップが研究されている。
 その他、聴覚系、体性感覚系、運動系などのトポグラフィックマップが研究されている。


== 臨界期==
 トポグラフィックマップの形成後はそれを変えることは難しいが、形成の前に脳の領域ごとに[[可塑性]]が持続する時期があり、それを[[臨界期]]と呼ぶ。この時期は神経活動依存的な修飾が可能な時期であり、この時期内での神経活動の変化は脳内でのマップのパターンを変えることができる。
==視覚優位性円柱 ==


 視覚中枢において片方の眼ともう片方の眼からの刺激を受ける領域が交互に存在し、ストライプ状に配置されている。このストライプをocular dominance columnという。通常は片方の眼ともう片方の眼のそれぞれのカラムは同じ大きさである。このストライプの形成にも神経活動が必要であり、臨界期における神経活動の変化はこのストライプ(すなわちトポグラフィカルマップ)のパターンを変える(例えば右目と左目のカラムでサイズが変わる)。


== 関連項目 ==
== 関連項目 ==
131

回編集