「エピジェネティックス」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
15行目: 15行目:
'''<u>3. メカニズム</u>'''<br>'''3.1 DNAメチル化'''<br>哺乳類のDNAメチル化は、連続するシトシン(C)残基とグアニン(G)残基(CとGはホスホジエステル結合によってつながれているため、リン酸を表す"p"を用いてCpGと示す)中のシトシン残基において見られる。シトシン残基のピリミジン環5位の炭素にDNAメチルトランスフェラーゼ(DNMT; DNMT1, DNMT3A, DNMT3B)によってメチル基が付加されることで、5-メチルシトシンができる。<br> ゲノム中CpGが豊富に含まれる領域をCpG islandと呼び、遺伝子のプロモーター領域に多く認められる。ゲノム中のCpG配列の約60~70%はメチル化されているが、CpG island中のCpGは一般的に低メチル化状態にある<ref name="ref5"><pubmed> 11782440 </pubmed></ref>。<br> DNAメチル化状態は細胞分裂後も受け継がる。DNA複製後、維持メチラーゼであるDNMT1がヘミメチル化状態のDNA(メチル化された親DNAとまだメチル化されていない娘DNAの二重鎖)を認識し、娘DNA鎖に相補的にメチル基を付加すると考えられている<ref name="ref5" />。<br> 発生過程では、受精直後に維持メチラーゼ活性が抑制されたり特異的脱メチル化酵素が働いたりすることによって、ゲノム全体で脱メチル化がおこる。メチル化されてないDNAの最初のメチル化は、新規修飾DNAメチラーゼ(de novo DNA methyltransferase; DNMT3AやDNMT3B)によって新たにDNAメチル化状態のプロフィールが形成されていく<ref name="ref5" />。  
'''<u>3. メカニズム</u>'''<br>'''3.1 DNAメチル化'''<br>哺乳類のDNAメチル化は、連続するシトシン(C)残基とグアニン(G)残基(CとGはホスホジエステル結合によってつながれているため、リン酸を表す"p"を用いてCpGと示す)中のシトシン残基において見られる。シトシン残基のピリミジン環5位の炭素にDNAメチルトランスフェラーゼ(DNMT; DNMT1, DNMT3A, DNMT3B)によってメチル基が付加されることで、5-メチルシトシンができる。<br> ゲノム中CpGが豊富に含まれる領域をCpG islandと呼び、遺伝子のプロモーター領域に多く認められる。ゲノム中のCpG配列の約60~70%はメチル化されているが、CpG island中のCpGは一般的に低メチル化状態にある<ref name="ref5"><pubmed> 11782440 </pubmed></ref>。<br> DNAメチル化状態は細胞分裂後も受け継がる。DNA複製後、維持メチラーゼであるDNMT1がヘミメチル化状態のDNA(メチル化された親DNAとまだメチル化されていない娘DNAの二重鎖)を認識し、娘DNA鎖に相補的にメチル基を付加すると考えられている<ref name="ref5" />。<br> 発生過程では、受精直後に維持メチラーゼ活性が抑制されたり特異的脱メチル化酵素が働いたりすることによって、ゲノム全体で脱メチル化がおこる。メチル化されてないDNAの最初のメチル化は、新規修飾DNAメチラーゼ(de novo DNA methyltransferase; DNMT3AやDNMT3B)によって新たにDNAメチル化状態のプロフィールが形成されていく<ref name="ref5" />。  


'''3.1.1 多様なDNA配列のメチル化'''<br>DNAメチル化が重要となる現象の例に、ゲノム刷り込み(genomic imprinting)がある。多くの場合、父親由来の染色体上の遺伝子と母親由来の遺伝子の発現量はほぼ等しいが、インプリンティング遺伝子の場合、一方の遺伝子は発現するもののもう一方からの発現は抑制される。これらの遺伝子は近傍にICR(imprinting control region) と呼ばれる領域を持つことが多く、どちらかの親由来のアレルが高メチル化、もう片親由来のアレルが低メチル化を示すDMR(differentially methylated region)を含む事が多い<ref><pubmed> 12869525 </pubmed></ref>。ゲノム上の反復配列や転移因子(トランスポゾン)様配列は一般的にメチル化され転写が抑制された状態にある。これは、染色体の安定化に寄与していると考えられている<ref name="ref5" />。また、哺乳類における遺伝子量補正(gene dosage compensation)の機構として、女性の2本あるX染色体のうちの1本は転写が不活性化(X chromosome inactivation)され高メチル化された状態にある<ref><pubmed> 22619385 </pubmed></ref>。不活性化されたX染色体はバー小体(bar body)という特徴的な構造を示す。
'''3.1.1 多様なDNA配列のメチル化'''<br>DNAメチル化が重要となる現象の例に、ゲノム刷り込み(genomic imprinting)がある。多くの場合、父親由来の染色体上の遺伝子と母親由来の遺伝子の発現量はほぼ等しいが、インプリンティング遺伝子の場合、一方の遺伝子は発現するもののもう一方からの発現は抑制される。これらの遺伝子は近傍にICR(imprinting control region) と呼ばれる領域を持つことが多く、どちらかの親由来のアレルが高メチル化、もう片親由来のアレルが低メチル化を示すDMR(differentially methylated region)を含む事が多い<ref><pubmed> 12869525 </pubmed></ref>。ゲノム上の反復配列や転移因子(トランスポゾン)様配列は一般的にメチル化され転写が抑制された状態にある。これは、染色体の安定化に寄与していると考えられている<ref name="ref5" />。また、哺乳類における遺伝子量補正(gene dosage compensation)の機構として、女性の2本あるX染色体のうちの1本は転写が不活性化(X chromosome inactivation)され高メチル化された状態にある<ref><pubmed> 22619385 </pubmed></ref>。不活性化されたX染色体はバー小体(bar body)という特徴的な構造を示す。  


'''3.1.2 DNAメチル化と転写の制御'''<br>一般的にプロモーター領域のDNAメチル化と遺伝子発現の程度はよく逆相関することが知られている<ref name="ref5" />が、DNAメチル化と遺伝子発現制御の関係は単純ではない。遺伝子構造内部のgene body領域のDNAメチル化は、スプライシングの制御などに関わっていると考えられている<ref><pubmed> 20613842 </pubmed></ref><ref><pubmed> 22641018 </pubmed></ref>。また、メチル化されたCpG配列には、メチル化CpG結合ドメインタンパク質(methyl-CpG-binding domain protein, MBD) が結合し転写を抑制する蛋白質複合体を引き寄せ、遺伝子発現の抑制が達成されると考えられている。しかしMBDの一種であり、レット症候群の責任遺伝子あるmethyl-CpG binding protein 2(MeCP2)では、転写の抑制および活性化双方の働きがあることが知られている<ref><pubmed> 18511691 </pubmed></ref>。  
'''3.1.2 DNAメチル化と転写の制御'''<br>一般的にプロモーター領域のDNAメチル化と遺伝子発現の程度はよく逆相関することが知られている<ref name="ref5" />が、DNAメチル化と遺伝子発現制御の関係は単純ではない。遺伝子構造内部のgene body領域のDNAメチル化は、スプライシングの制御などに関わっていると考えられている<ref><pubmed> 20613842 </pubmed></ref><ref><pubmed> 22641018 </pubmed></ref>。また、メチル化されたCpG配列には、メチル化CpG結合ドメインタンパク質(methyl-CpG-binding domain protein, MBD) が結合し転写を抑制する蛋白質複合体を引き寄せ、遺伝子発現の抑制が達成されると考えられている。しかしMBDの一種であり、レット症候群の責任遺伝子あるmethyl-CpG binding protein 2(MeCP2)では、転写の抑制および活性化双方の働きがあることが知られている<ref><pubmed> 18511691 </pubmed></ref>。  
23行目: 23行目:
'''3.1.4 DNAメチル化の解析方法'''<br>大別するとバイサルファイト処理(bisulfite modification, BS)を基本とする方法と、BSを使用しない方法にわかれる<ref><pubmed> 22986265 </pubmed></ref><ref><pubmed> 22945394 </pubmed></ref>。<br>BSを基本とする方法では、重亜硫酸ナトリウム(sodium bisulfite: NaHSO3)処理により、ゲノム中のメチル化されていないCをウラシル(U)に変換する。ウラシルはPCRなど酵素反応ではチミン(T)として認識されるため、その後の分子生物学解析でC/T多型として処理することができる。古典的にはBS処理後、標的領域をPCR増幅、大腸菌を形質転換し、多数の単一コロニーのシークエンスを行うことにより定性的・定量的なメチル化状態の解析が行われてきた。多検体処理には、PCR増幅後Qiagen社のPyrosequencerやSequenome社のMass Arrayなど専用の機器を用いた解析が行われている。網羅的解析として、アレイ技術を利用した方法や、次世代シークエンサーを用いた解析が行われている。前者ではIllumina社のInfinium assayが広く用いられている。後者では解析部位を制限酵素処理により限定したRRBS(reduced representative bisulfite sequencing)法や、全ゲノム解析を行うWGBS(whole genome bisulfite sequencing)が行われている。<br>BSを用いない方法として、メチル化感受性・非感受性制限酵素を利用した方法や、抗メチル化シトシン抗体やメチル化DNA結合領域(methylated DNA binding domain: MBD)などを用いメチル化DNAを濃縮する方法がある。抗メチル化シトシン抗体を用いた解析は、メチル化DNA免疫沈降法(methylated DNA immunoprecipitation, MeDIP)と呼ばれる。メチル化DNAの濃縮後、タイリングアレイや次世代シークエンサーを用いた解析が広く行われている。  
'''3.1.4 DNAメチル化の解析方法'''<br>大別するとバイサルファイト処理(bisulfite modification, BS)を基本とする方法と、BSを使用しない方法にわかれる<ref><pubmed> 22986265 </pubmed></ref><ref><pubmed> 22945394 </pubmed></ref>。<br>BSを基本とする方法では、重亜硫酸ナトリウム(sodium bisulfite: NaHSO3)処理により、ゲノム中のメチル化されていないCをウラシル(U)に変換する。ウラシルはPCRなど酵素反応ではチミン(T)として認識されるため、その後の分子生物学解析でC/T多型として処理することができる。古典的にはBS処理後、標的領域をPCR増幅、大腸菌を形質転換し、多数の単一コロニーのシークエンスを行うことにより定性的・定量的なメチル化状態の解析が行われてきた。多検体処理には、PCR増幅後Qiagen社のPyrosequencerやSequenome社のMass Arrayなど専用の機器を用いた解析が行われている。網羅的解析として、アレイ技術を利用した方法や、次世代シークエンサーを用いた解析が行われている。前者ではIllumina社のInfinium assayが広く用いられている。後者では解析部位を制限酵素処理により限定したRRBS(reduced representative bisulfite sequencing)法や、全ゲノム解析を行うWGBS(whole genome bisulfite sequencing)が行われている。<br>BSを用いない方法として、メチル化感受性・非感受性制限酵素を利用した方法や、抗メチル化シトシン抗体やメチル化DNA結合領域(methylated DNA binding domain: MBD)などを用いメチル化DNAを濃縮する方法がある。抗メチル化シトシン抗体を用いた解析は、メチル化DNA免疫沈降法(methylated DNA immunoprecipitation, MeDIP)と呼ばれる。メチル化DNAの濃縮後、タイリングアレイや次世代シークエンサーを用いた解析が広く行われている。  


&nbsp;
&nbsp;  


<u>'''3.2 ヒストン修飾'''</u><br>DNAにヒストン蛋白質が巻きついた状態の構造をヌクレオソーム(nucleosome)といい、クロマチンの構成単位である。ヌクレオソームの4種類のヒストンのアミノ酸側鎖はさまざまな修飾を受け、クロマチン構造が変化することによって遺伝子発現が調節される。ヒストンのアミノ酸配列全体を通して修飾が認められるが、特にヒストンテールと呼ばれるヒストンのN末端に位置するリシンやアスパラギンが高頻度にアセチル化、メチル化、ユビキチン化、リン酸化およびスモイル化など多様な修飾を受ける。<br>活発に転写されている遺伝子のプロモーター領域では、ヒストンH3のリシン9やリシン14のアセチル化(H3K9ac, H3K14ac)や、リシン4のトリメチル化(H3K4me3)などが認められる。他方で、ヒストンH3のリシン9やリシン27のトリメチル化(H3K9me3, H3K27me3)などは発現が抑制されているプロモーター領域に認められる<ref><pubmed> 17522673 </pubmed></ref>。これらの修飾は、たがいに排他的であったりさまざまな組み合わせで存在したりするため、その多様性が遺伝子の発現を決定し、細胞特異的な構造・機能を生み出していると考えられている(ヒストンコード仮説)<ref><pubmed> 10638745 </pubmed></ref>。  
<u>'''3.2 ヒストン修飾'''</u><br>DNAにヒストン蛋白質が巻きついた状態の構造をヌクレオソーム(nucleosome)といい、クロマチンの構成単位である。ヌクレオソームの4種類のヒストンのアミノ酸側鎖はさまざまな修飾を受け、クロマチン構造が変化することによって遺伝子発現が調節される。ヒストンのアミノ酸配列全体を通して修飾が認められるが、特にヒストンテールと呼ばれるヒストンのN末端に位置するリシンやアスパラギンが高頻度にアセチル化、メチル化、ユビキチン化、リン酸化およびスモイル化など多様な修飾を受ける。<br>活発に転写されている遺伝子のプロモーター領域では、ヒストンH3のリシン9やリシン14のアセチル化(H3K9ac, H3K14ac)や、リシン4のトリメチル化(H3K4me3)などが認められる。他方で、ヒストンH3のリシン9やリシン27のトリメチル化(H3K9me3, H3K27me3)などは発現が抑制されているプロモーター領域に認められる<ref><pubmed> 17522673 </pubmed></ref>。これらの修飾は、たがいに排他的であったりさまざまな組み合わせで存在したりするため、その多様性が遺伝子の発現を決定し、細胞特異的な構造・機能を生み出していると考えられている(ヒストンコード仮説)<ref><pubmed> 10638745 </pubmed></ref>。  
33行目: 33行目:
<br>  
<br>  


<references />
<references />  
 
 
 
 
 
 
 
(執筆担当者:村田唯、文東美紀、岩本和也 編集担当者:加藤忠史)
30

回編集