「IPS細胞」の版間の差分

633 バイト追加 、 2012年3月14日 (水)
編集の要約なし
編集の要約なし
編集の要約なし
37行目: 37行目:
== iPS細胞の細胞特性  ==
== iPS細胞の細胞特性  ==


 一般的な細胞特性として、iPS細胞は、後述の通り、培養下においても様々な細胞系譜へと分化誘導が可能である。また、iPS細胞の形質は基本的に同種のES細胞と相同である。多能性幹細胞が有する分化多能性を表す一つの基準として、ナイーブ状態(naive state)とプライムド状態(primed state)の区分がある。ナイーブ状態は胚盤胞の内部細胞塊の起源をより強く反映していると考えられ、マウスやラットのES細胞はこちらに分類される。形態的にはドーム状のコロニーを形成し、。なかでも、非常に高いキメラ形成能および生殖系列への寄与を示す状態は、グラウンドステート(ground state)とも表現される。一方、プライムド状態は胚盤胞より発生が進んだエピブラストの起源に相当すると考えられ、ウサギや霊長類のES細胞が含まれる。
 一般的な細胞特性として、iPS細胞は、後述の通り、培養下においても様々な細胞系譜へと分化誘導が可能である。また、iPS細胞の形質は基本的に同種のES細胞と相同である。多能性幹細胞が有する分化多能性を表す一つの基準として、ナイーブ状態(naive state)とプライムド状態(primed state)の区分がある。ナイーブ状態は胚盤胞の内部細胞塊の起源をより強く反映していると考えられ、マウスやラットのES細胞はこちらに分類される。形態的にはドーム状のコロニーを形成し、LIFとBMP4依存的に自己複製する。ナイーブ状態の中でも、非常に高いキメラ形成能および生殖系列への寄与を示す細胞はグラウンドステート(ground state)にあるとも表現される。一方、プライムド状態は胚盤胞より発生が進んだエピブラストの起源に相当すると考えられ、ウサギや霊長類のES細胞が含まれる。 自己複製にはFGF2とActivin Aを必要とし、扁平なコロニーを形成して増殖する。iPS細胞の多能性状態(ナイーブまたはプライムド)は同種のES細胞と同等であるが、これは種の相違によって規定されているものではなく、細胞株として反映する発生段階を差によるものと考えられる。


<br>
<br>
51行目: 51行目:
== &nbsp;動物種  ==
== &nbsp;動物種  ==


 マウスにおけるiPS細胞の樹立が報告された翌年、ヒトiPS細胞の樹立が報告された。その後、ラット、ウサギ、ブタ、ウマ、ウシ、ヒツジ、イヌのほか、非ヒト霊長類であるマーモセット、アカゲザル、カニクイザルにおいてもiPS細胞が樹立されている。また、絶滅危惧種であるシロサイやマンドリルのiPS細胞樹立の報告もあり、遺伝子資源の保存といった観点からも注目されている。
 マウスにおけるiPS細胞の樹立が報告された翌年、ヒトiPS細胞の樹立が報告された。その後、ラット、ウサギ、ブタ、ウマ、ウシ、ヒツジ、イヌのほか、非ヒト霊長類であるマーモセット、アカゲザル、カニクイザルにおいてもiPS細胞が樹立されている。また、絶滅危惧種であるシロサイやマンドリルのiPS細胞樹立の報告もあり、希少な遺伝子資源の保存といった観点からも注目されている。


<br>
<br>
57行目: 57行目:
== 細胞種  ==
== 細胞種  ==


 マウス胎仔の繊維芽細胞(mouse embryonic fibroblast, MEF)が用いられた。&nbsp;成体の繊維芽細胞、胃上皮細胞、肝実質細胞、神経幹細胞、血液細胞、脂肪幹細胞、間葉系幹細胞。一方、ヒトiPS細胞に関しては、皮膚繊維芽細胞のほか毛乳頭、色素細胞、羊膜細胞、臍帯血、末梢血、骨髄、ケラチノサイト、脂肪間質細胞、歯髄幹細胞からの樹立が報告されている。
 最初のマウスiPS細胞の樹立には胎仔の繊維芽細胞および成体尻尾の繊維芽細胞が、ヒトiPS細胞の樹立には成人皮膚繊維芽細胞が用いられた。その後、胃上皮細胞、肝実質細胞、ケラチノサイト、神経幹細胞、血液細胞、脂肪幹細胞、歯髄幹細胞、間葉系幹細胞等からの樹立が相次いで報告されている。一方、ヒトiPS細胞に関しては、毛乳頭、色素細胞、羊膜細胞、脂肪間質細胞


<br>
<br>
63行目: 63行目:
== 遺伝子導入方法  ==
== 遺伝子導入方法  ==


 iPS細胞が樹立された当初は、遺伝子導入の手段としてレトロウイルスやレンチウイルスがベクターとして利用された。しかし、どちらのウイルスもゲノムDNAに組み込まれることから、挿入に伴うDNA配列の変異や近傍の遺伝子に及ぼす影響、予期しない異常が生じる危険性を包含している。また、レトロウイルスベクターに含まれるウイルスプロモーターはES細胞においてはサイレンシングを受けるが、。さらには導入遺伝子の活性化による腫瘍形成等。そこで、遺伝子挿入に伴うリスクを避けるための新たな遺伝子導入方法が考案されてきた。iPS細胞樹立後の導入遺伝子の除去を可能とする方法として、Cre-loxPシステムの利用やトランスポゾンの特性を利用したピギーバック(piggyBac)が開発された。一方、はじめからゲノムに組み込まれないエピソーマルベクターとして、アデノウイルスやセンダイウイルス、プラスミドDNAを用いる手法も実施されている。さらに、ベクターを介することなく組換えタンパク質や合成RNA、miRNAを直接導入する方法についても報告されている。
 iPS細胞が樹立された当初、遺伝子導入のベクターとしてはレトロウイルスやレンチウイルスが利用された。しかし、どちらのウイルスも導入細胞のゲノムDNAに組み込まれることから、挿入変異や近傍の遺伝子の発現に及ぼす影響といった予期しない異常が生じる危険性を包含している。また、レトロウイルスベクターは多能性幹細胞において強力なサイレンシングを受けるが、初期化レベルが低いiPS細胞では発現が持続していることや、分化後においても導入遺伝子の活性化が起こりうることから、腫瘍形成等のリスクが伴う。そこで、iPS細胞樹立後に導入遺伝子を除去する手法として、Cre-loxPシステムの利用やトランスポゾンの特性を利用したピギーバック(piggyBac)が開発された。一方、はじめからゲノムに組み込まれないベクターとして、アデノウイルスやセンダイウイルス、プラスミドDNAを用いた誘導法も利用されている。さらに、ベクターを介さずに直接、組換えタンパク質や合成RNA、miRNAを導入してiPS細胞を作成する方法についても報告がなされている。


<br>
<br>
69行目: 69行目:
== iPS細胞を誘導する因子  ==
== iPS細胞を誘導する因子  ==


 前述の通り、最初のiPS細胞はOct4、Sox2、Klf4、c-Mycの4種類の遺伝子(山中4因子)を導入することによって作成された。間もなく、誘導効率は低下するもののc-Mycを除いたOct4、Sox2、Klf4のみ(山中3因子)によってもiPS細胞は樹立可能であることが示された。ヒトの場合もマウスと同じ遺伝子セットでiPS細胞の誘導が可能であるが、山中博士らとほぼ同時にヒトiPS細胞について報告したJames Thomson博士らはOCT4、SOX2、NANOG、LIN28の組合せを用いている。最も広範に利用されている遺伝子セットは山中因子であるが、神経幹細胞の場合はOct4単独の導入によってiPS細胞が誘導し得るように、細胞種によっては少ない因子でのiPS細胞誘導も可能である。また、iPS細胞の誘導効率や初期化レベルを向上させる要因として、Esrrb、Tbx3、L-Myc、Glis1等の因子の追加導入や、Ink4Arf、p53、p21、Baxの抑制効果についても報告がなされている。<br> 一方、遺伝子導入ではなく低分子化合物を併用したiPS細胞誘導についても多数の報告がある。FGFR阻害剤のSU5402、MEK阻害剤のPD1843352またはPD0325901、GSK3阻害剤のCHIR99021の組合せ、俗に2iや3iと呼ばれる。BayK8644。エピジェネティック変化を促すものとして、ヒストン脱アセチル化酵素阻害剤のバルプロ酸(VPA)やトリコスタチンA(TSA)、G9a阻害剤のBIX01294、シチジン類縁体の5-アザシチジン。  
 前述の通り、最初のiPS細胞はOct4、Sox2、Klf4、c-Mycの4種類の遺伝子(山中4因子)を導入することによって作成された。間もなく、誘導効率は低下するもののc-Mycを除いたOct4、Sox2、Klf4のみ(山中3因子)によってもiPS細胞は樹立可能であることが示された。ヒトの場合もマウスと同じ遺伝子セットでiPS細胞の誘導が可能であるが、山中博士らとほぼ同時にヒトiPS細胞について報告したJames Thomson博士らはOCT4、SOX2、NANOG、LIN28の組合せを用いている。最も広範に用いられている遺伝子セットはプロトタイプである山中4因子であるが、神経幹細胞の場合はOct4単独の導入によってiPS細胞が誘導しうるように、細胞種によっては少ない因子・組合せでのiPS細胞誘導も可能である。また、iPS細胞の誘導効率や初期化レベルを向上させる要素として、Esrrb、Tbx3、L-Myc、Glis1等の追加因子の導入や、Ink4Arf、p53、p21、Baxの抑制効果についても報告されている。<br> 一方、遺伝子導入ではなく低分子化合物を併用したiPS細胞誘導についても多数の報告がある。ES細胞の自己複製を亢進・維持する低分子化合物としてFGFR阻害剤(SU5402)、MEK阻害剤(PD1843352またはPD0325901)、GSK3阻害剤(CHIR99021)が知られており、3種の混合を「3i」、後者2種の混合を「2i」と呼称する。BayK8644。エピジェネティック変化を促すものとして、ヒストン脱アセチル化酵素阻害剤のバルプロ酸(VPA)やトリコスタチンA(TSA)、G9a阻害剤のBIX01294、シチジン類縁体の5-アザシチジン。  


<br>
<br>
67

回編集