「ジャンクトフィリン」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
26行目: 26行目:


== 構造  ==
== 構造  ==
 膜貫通セグメントはカルボキシル末端に1箇所のみ存在し、アミノ末端には[[wikipedia:ja:シグナル配列|シグナル配列]]が存在しない。一方、アミノ末端側には14アミノ酸よりなる[[MORNモチーフ]]と命名された繰り返し配列が8回現れる(図1)。In vitro合成mRNAを注入した[[wikipedia:ja:両生類|両生類]]初期胚の細胞ではJP-1の発現が細胞表層膜直下に[[wikipedia:ja:抗体染色|抗体染色]]法により観察されるが、部分欠損体の発現実験により、このJP-1の細胞表層膜との結合にはMORNモチーフが必要であることが示されている。したがって、MORNモチーフを介して細胞表層膜と結合する一方で、カルボキシル末端側の膜貫通セグメントにおいて小胞体膜を貫通することで、ジャンクトフィリンは両膜を架橋し、結合膜構造の形成に寄与すると考えられている(図2)<ref name="ref3" />。


[[image:JP34ハイドロパシー指標.jpg|thumb|350px|'''図1.ウサギ1型ジャンクトフィリン(JP-1)のハイドロパシー指標'''<br>横軸に記されたアミノ酸番号が最も大きいカルボキシル末端側に疎水性が高い推定膜貫通領域(TM)が存在する。また、アミノ酸番号が小さいアミノ末端側には、MORNモチーフと命名された繰り返し配列が8回現れる(MORN motif)。この部分が欠損したmRNAを注入した両生類初期胚の細胞では、野生型では細胞表層膜直下に局在するJP-1が細胞質内に拡散するため、この領域がJP-1と細胞表層膜との結合に必要であると考えられる(PM binding)。]]
<gallery widths=300px>
 
image:JP34ハイドロパシー指標.jpg|'''図1.ウサギ1型ジャンクトフィリン(JP-1)のハイドロパシー指標'''<br>横軸に記されたアミノ酸番号が最も大きいカルボキシル末端側に疎水性が高い推定膜貫通領域(TM)が存在する。また、アミノ酸番号が小さいアミノ末端側には、MORNモチーフと命名された繰り返し配列が8回現れる(MORN motif)。この部分が欠損したIn vitro合成mRNAを注入した両生類初期胚の細胞では、野生型では細胞表層膜直下に局在するJP-1が細胞質内に拡散するため、この領域がJP-1と細胞表層膜との結合に必要であると考えられる(PM binding)。
 膜貫通セグメントはカルボキシル末端に1箇所のみ存在し、アミノ末端には[[wikipedia:ja:シグナル配列|シグナル配列]]が存在しない。一方、アミノ末端側には14アミノ酸よりなる[[MORNモチーフ]]と命名された繰り返し配列が8回現れる(図1)。cRNAを注入した[[wikipedia:ja:両生類|両生類]]初期胚の細胞ではJP-1の発現が細胞表層膜直下に[[wikipedia:ja:抗体染色|抗体染色]]法により観察されるが、部分欠損体の発現実験により、このJP-1の細胞表層膜との結合にはMORNモチーフが必要であることが示されている。したがって、MORNモチーフを介して細胞表層膜と結合する一方で、カルボキシル末端側の膜貫通セグメントにおいて小胞体膜を貫通することで、ジャンクトフィリンは両膜を架橋し、結合膜構造の形成に寄与すると考えられている<ref name="ref3" />
image:JP34シグナル.jpg|'''図2.中枢神経細胞における細胞表層膜/小胞体膜イオンチャネル間の共役とジャンクトフィリン'''<br>海馬CA1錐体細胞では細胞表層膜(PM)上のNMDA型グルタミン酸受容体(NMDAR)、小脳プルキンエ細胞ではP/Q型電位依存性カルシウムチャネル(P/Q Ch)を介して細胞外から流入したカルシウム(Ca<sup>2+</sup>)は、小胞体膜(ER)上に存在するリアノジン受容体(RyRs)を活性化する()。さらに小胞体から放出されたCa<sup>2+</sup>は、細胞表層膜に存在する小コンダクタンスCa<sup>2+</sup>依存性カリウムチャネル(SK Ch)を活性化し(②)、正電荷を持つカリウムイオン(K<sup>+</sup>)が細胞外に流出することで、膜電位変化における後過分極が生じる。野生型の海馬CA1錐体細胞や小脳プルキンエ細胞では、脱分極性の電位変化に引き続き、RyRsの阻害薬であるリアノジン(Rya)やSK Chの阻害薬であるapamin(Apa)に感受性を持つ後過分極が見られるが、脳型ジャンクトフィリン(JP3/4)二重欠損マウスでは、この様な細胞表層膜/小胞体膜のイオンチャネル間の機能的共役が阻害されるために、Rya/Apa感受性を有する後過分極が阻害されると考えられる。
</gallery>


== サブタイプ  ==
== サブタイプ  ==
 
 現在まで、JP-1~JP-4まで、4種類のサブタイプが同定されている。[[wikipedia:ja:マウス|マウス]]では、アミノ酸数は、JP-1が660、JP-2が696、JP-3が744、JP-4が628であり<ref name="ref4" />、サブタイプ間の相同性は約40%程度である<ref name="ref3" />。[[wikipedia:ja:ウェスタンブロット|ウェスタンブロット]]から推測される分子量は72~95kDaであり、ジャンクトフィリン分子全体的に、アミノ酸数から推測される分子量よりも大きくなる傾向があるが、その原因は解明されていない<ref name="ref4" />。MORN配列、およびカルボキシル末端側の膜貫通領域は、サブタイプ間の相同性がそれぞれ80%、50%と、相対的に高くなっている領域である。しかし、カルボキシル末端側にある膜貫通領域を除けば、MORN配列を含め、相同性の高い部分はアミノ酸番号400番台前半までの部分に集中しており<ref name="ref4" />、C末側の膜貫通領域直前の約250個のアミノ酸配列の相同性は、約6%程度と相対的に低くなっている<ref name="ref3" />。マウスジャンクトフィリンの各サブタイプにおけるアミノ酸配列の具体的な相違については、Nishi et al. 2003<ref name="ref4" />を参照されたい。  
 現在まで、JP-1~JP-4まで、4種類のサブタイプが同定されている。[[wikipedia:ja:マウス|マウス]]では、アミノ酸数は、JP-1が660、JP-2が696、JP-3が744、JP-4が628であり<ref name="ref4" />、サブタイプ間の相同性は約40%程度と見積もられている<ref name="ref3" />。[[wikipedia:ja:ウェスタンブロット|ウェスタンブロット]]から推測される分子量は72~95kDaであり、ジャンクトフィリン分子全体的に、アミノ酸数から推測される分子量よりも大きくなる傾向があるが、その原因は解明されていない<ref name="ref4" />。MORN配列、およびカルボキシル末端側の膜貫通領域は、サブタイプ間の相同性がそれぞれ80%、50%と、相対的に高くなっている領域である。しかし、カルボキシル末端側にある膜貫通領域を除けば、MORN配列を含め、相同性の高い部分はアミノ酸番号400番台前半までの部分に集中しており<ref name="ref4" />、C末側の膜貫通領域直前の約250個のアミノ酸配列の相同性は、約6%程度と相対的に低くなっている<ref name="ref3" />。マウスジャンクトフィリンの各サブタイプにおけるアミノ酸配列の具体的な相違については、Nishi et al. 2003<ref name="ref4" />を参照されたい。  


== 発現分布  ==
== 発現分布  ==
 ジャンクトフィリンは興奮性細胞において、各サブタイプの発現が見られる。JP-1は骨格筋特異的に発現が見られる。JP-2は[[wikipedia:ja:心臓|心臓]]と骨格筋で発現レベルが特に高いほか、[[wikipedia:ja:消化管|消化管]]や[[wikipedia:ja:気管|気管]]の[[wikipedia:ja:平滑筋|平滑筋]]でも発現が確認され、筋細胞全般に分布すると推測される<ref name="ref3" />。
 ジャンクトフィリンは興奮性細胞において、各サブタイプの発現が見られる。JP-1は骨格筋特異的に発現が見られる。JP-2は[[wikipedia:ja:心臓|心臓]]と骨格筋で発現レベルが特に高いほか、[[wikipedia:ja:消化管|消化管]]や[[wikipedia:ja:気管|気管]]の[[wikipedia:ja:平滑筋|平滑筋]]でも発現が確認され、筋細胞全般に分布すると推測される<ref name="ref3" />。


 一方、JP-3、JP-4の発現は脳に限局的であり、両者の発現部位には重複性が見られるが<ref name="ref4" />、このことは、後述のノックアウトマウアスの表現型において、JP-3、JP-4それぞれの単独ノックアウトマウスでは顕著な異常が現れないことと互いに矛盾しない。脳内におけるJP-3、JP-4の発現レベルには部位による違いが見られ、[[海馬]]の[[CA1]]~[[CA3]]領域や[[歯状回]]、[[小脳]][[顆粒細胞層]]などでは、JP-3、JP-4ともに高レベルの発現が見られる。尚、JP-3、JP-4の脳内分布に関する詳細については、Nishi et al. (2003)<ref name="ref4" />を参考にされたい。
 一方、JP-3、JP-4の発現は脳に限局的であり、両者の発現部位には重複性が見られるが<ref name="ref4" />、このことは、後述のノックアウトマウアスの表現型において、JP-3、JP-4それぞれの単独ノックアウトマウスでは顕著な異常が現れないことと互いに矛盾しない。脳内におけるJP-3、JP-4の発現レベルには部位による違いが見られ、[[海馬]]の[[CA1]]~[[CA3]]領域や[[歯状回]]、[[小脳]][[顆粒細胞層]]などでは、JP-3、JP-4ともに高レベルの発現が見られる。尚、JP-3、JP-4の脳内分布に関する詳細については、Nishi et al. (2003)<ref name="ref4" />を参考にされたい。
(細胞内分布などはいかがでしょうか。シナプスにあるのか、細胞体にあるのか、光顕や電顕レベルの仕事があればご紹介ください)
(細胞内分布などはいかがでしょうか。シナプスにあるのか、細胞体にあるのか、光顕や電顕レベルの仕事があればご紹介ください)
 
{|style="float:right; width:220px; border: 1px solid darkgray;"
|
{| class="wikitable"
|+表 ジャンクトフィリンの発現パタン
| align="center"|'''名称''' ||align="center" |'''遺伝子名'''
|-
|ジャンクトフィリン1 || [http://mouse.brain-map.org/experiment/show/69735664 JPH1]
|-
|ジャンクトフィリン2|| [http://mouse.brain-map.org/experiment/show/68498534 JPH2]
|-
|ジャンクトフィリン3|| [http://mouse.brain-map.org/experiment/show/69735670 JPH3]
|-
|ジャンクトフィリン4||  [http://mouse.brain-map.org/experiment/show/106919 JPH4]
|}
|-
|遺伝子名はAllen Brain Atlasの[[in situハイブリダイゼーション|''in situ''ハイブリダイゼーション]]データーへリンクしている。
|}
== 機能  ==
== 機能  ==


67行目: 83行目:


==== 小脳機能の異常 ====
==== 小脳機能の異常 ====
[[image:JP34シグナル.jpg|thumb|350px|'''図2.中枢神経細胞における細胞表層膜/小胞体膜イオンチャネル間の共役とジャンクトフィリン'''<br>海馬CA1錐体細胞では細胞表層膜(PM)上のNMDA型グルタミン酸受容体(NMDAR)、小脳プルキンエ細胞ではP/Q型電位依存性カルシウムチャネル(P/Q Ch)を介して細胞外から流入したカルシウム(Ca<sup>2+</sup>)は、小胞体膜(ER)上に存在するリアノジン受容体(RyRs)を活性化する(①)。さらに小胞体から放出されたCa<sup>2+</sup>は、細胞表層膜に存在する小コンダクタンスCa<sup>2+</sup>依存性カリウムチャネル(SK Ch)を活性化し(②)、正電荷を持つカリウムイオン(K<sup>+</sup>)が細胞外に流出することで、膜電位変化における後過分極が生じる。野生型の海馬CA1錐体細胞や小脳プルキンエ細胞では、脱分極性の電位変化に引き続き、RyRsの阻害薬であるリアノジン(Rya)やSK Chの阻害薬であるapamin(Apa)に感受性を持つ後過分極が見られるが、脳型ジャンクトフィリン(JP3/4)二重欠損マウスでは、この様な細胞表層膜/小胞体膜のイオンチャネル間の機能的共役が阻害されるために、Rya/Apa感受性を有する後過分極が阻害されると考えられる。]]
 JP-DKOでは、[[回転棒テスト]]および小脳依存性の[[瞬膜反射条件付け学習]]において、明確な阻害が見られる。また、小脳運動学習の基盤とされる[[平行線維]]-[[プルキンエ細胞]]シナプスにおける[[長期抑圧]]([[long-term depression]]; 小脳[[LTD]])に関して、野生型において小脳LTDを誘導する刺激(登上線維刺激とプルキンエ細胞の脱分極との組み合わせ刺激)により、JP-DKO小脳スライスではLTPが誘導される(小脳LTDのLTP化)。[[登上線維]]刺激によりプルキンエ細胞ではcomplex spikeと言う複雑な脱分極性の電位応答が見られるが、この電位応答の脱分極相の後に続く[[遅い過分極応答]]([[slow afterhyperpolarization]]; [[sAHP]])が、JP-DKOプルキンエ細胞では欠損している。引き続き薬理学的な解析により、sAHPはSKチャネルを介し、プルキンエ細胞で優先的に発現するRyR1の活性化に依存することが示されたが、JP-DKOプルキンエ細胞では、SKチャネル阻害薬である[[apamin]]、およびRyR1を阻害するリアノジンもしくは[[dantrolene]]に感受性のあるsAHPが欠損している。さらに、登上線維刺激ではNMDA型グルタミン酸受容体が活性化されず、RyR1を活性化するカルシウム流入はP/Q型カルシウムチャネルを介すると考えられることから、JP-DKOプルキンエ細胞では、P/Q型カルシウムチャネル-RyR1-SHチャネルの機能的共役が阻害されていることが示唆された(図2)。さらに野生型マウスの小脳[[スライス標本]]においても、apamin投与により小脳LTDのLTP化が見られることから、JP-DKO小脳におけるLTDのLTP化の少なくとも一つの原因として、P/Q型カルシウムチャネル-RyR1-SHチャネル間の機能的共役の阻害によるsAHPの欠損が示唆された<ref><pubmed>17347645</pubmed></ref><ref><pubmed>17904530</pubmed></ref>。
 JP-DKOでは、[[回転棒テスト]]および小脳依存性の[[瞬膜反射条件付け学習]]において、明確な阻害が見られる。また、小脳運動学習の基盤とされる[[平行線維]]-[[プルキンエ細胞]]シナプスにおける[[長期抑圧]]([[long-term depression]]; 小脳[[LTD]])に関して、野生型において小脳LTDを誘導する刺激(登上線維刺激とプルキンエ細胞の脱分極との組み合わせ刺激)により、JP-DKO小脳スライスではLTPが誘導される(小脳LTDのLTP化)。[[登上線維]]刺激によりプルキンエ細胞ではcomplex spikeと言う複雑な脱分極性の電位応答が見られるが、この電位応答の脱分極相の後に続く[[遅い過分極応答]]([[slow afterhyperpolarization]]; [[sAHP]])が、JP-DKOプルキンエ細胞では欠損している。引き続き薬理学的な解析により、sAHPはSKチャネルを介し、プルキンエ細胞で優先的に発現するRyR1の活性化に依存することが示されたが、JP-DKOプルキンエ細胞では、SKチャネル阻害薬である[[apamin]]、およびRyR1を阻害するリアノジンもしくは[[dantrolene]]に感受性のあるsAHPが欠損している。さらに、登上線維刺激ではNMDA型グルタミン酸受容体が活性化されず、RyR1を活性化するカルシウム流入はP/Q型カルシウムチャネルを介すると考えられることから、JP-DKOプルキンエ細胞では、P/Q型カルシウムチャネル-RyR1-SHチャネルの機能的共役が阻害されていることが示唆された(図2)。さらに野生型マウスの小脳[[スライス標本]]においても、apamin投与により小脳LTDのLTP化が見られることから、JP-DKO小脳におけるLTDのLTP化の少なくとも一つの原因として、P/Q型カルシウムチャネル-RyR1-SHチャネル間の機能的共役の阻害によるsAHPの欠損が示唆された<ref><pubmed>17347645</pubmed></ref><ref><pubmed>17904530</pubmed></ref>。