「ニューレグリン」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
2行目: 2行目:


 ニューレグリンとは 上皮成長因子(Epidermal Growth Factor;EGF)様の活性ドメインを有する蛋白質で、細胞の増殖、成長、分化に影響を発揮する。  
 ニューレグリンとは 上皮成長因子(Epidermal Growth Factor;EGF)様の活性ドメインを有する蛋白質で、細胞の増殖、成長、分化に影響を発揮する。  
== サブタイプ  ==
 最初に見つけられた分子、ニューレグリン1(NRG1)は、その歴史的経緯の違いから、neu differentiation factor (NDF), heregulin (Her), glia growth factor (GGF), ARIA (acetylcholine receptor inducing activity)などの別称を有する。 現在、NRGファミリーはNRG1-4に加えて、Tomoregulin-2 (TEFF2)やChondroitin sulfate proteoglycan 5 (CSPG5)も同様の活性型EGF様ドメインを持つことから、それぞれNRG5, NRG6とも呼ばれる。


== 分布  ==
== 分布  ==


XXXXXX
(産生細胞は何か、どの組織に多いか判っておりましたら御記述下さい)


== 生合成  ==
== 生合成  ==


 通常、膜結合型の大きな[[前駆体分子]]として合成され、[[細胞膜]]表面にアンカーしている。[[神経伝達]]や細胞損傷、細胞ストレスなどの刺激に反応して、細胞は[[ADAM]]などの膜結合型[[メタロプロテアーゼ]]が活性化し、NRG前駆体の細胞外ドメインを切断(シェデイング)して、その活性ドメインを放出する。多くの場合、このシェデイングが活性発揮の律速となっている。  
 通常、膜結合型の大きな[[前駆体分子]]として合成され、[[細胞膜]]表面にアンカーされている。[[神経伝達]]や細胞損傷、細胞ストレスなどの刺激に反応して、細胞は[[ADAM]]などの膜結合型[[メタロプロテアーゼ]]が活性化し、NRG前駆体の細胞外ドメインを切断(シェデイング)して、その活性ドメインを放出する。多くの場合、このシェデイングが活性発揮の律速となっている。<br>  
 
<br>  


== 構造  ==
== 構造  ==
17行目: 19行目:
 その活性中心部は、約50-60アミノ酸からなる構造を呈し、6つの[[システイン]]が3つの[[ジスルフィド結合]]し、2つの[[ベータシート]]構造を形成している。  
 その活性中心部は、約50-60アミノ酸からなる構造を呈し、6つの[[システイン]]が3つの[[ジスルフィド結合]]し、2つの[[ベータシート]]構造を形成している。  


== サブタイプ  ==
<br>
 
 最初に見つけられた分子、ニューレグリン1(NRG1)は、その歴史的経緯の違いから、neu differentiation factor (NDF), heregulin (Her), glia growth factor (GGF), ARIA (acetylcholine receptor inducing activity)などの別称を有する。 現在、NRGファミリーはNRG1-4に加えて、Tomoregulin-2 (TEFF2)やChondroitin sulfate proteoglycan 5 (CSPG5) (TEFF2)も同様の活性型EGF様ドメインを持つことから、それぞれNRG5, NRG6とも呼ばれる。


== 受容体  ==
== 受容体  ==


 これらのNRG分子は、[[上皮成長因子受容体]]ファミリー分子(ErbB1―4)に、おのおの異なる親和性で結合する。ErbB1-4は共通した構造をもち、細胞外領域(リガンド結合部、2量体結合部)、細胞膜貫通領域、細胞内領域([[チロシンキナーゼ]]酵素部)からなる。細胞外領域にリガンドが結合すると、受容体の酵素部が活性化するとともに、相互アフィニテイーが上がり、2量体を形成しやすくなる。通常、2量体を形成すると、相手側のErbB分子の細胞内領域を[[リン酸化]]する。表1にあるようにErbB分子は、多くの組み合わせで2量体を形成するが、ホモ2量体でない限り、リガンド結合ErbB分子とシグナル伝達ErbB分子は、異なるかもしれないことに注意しなくてはならない。  
 これらのNRG分子は、[[上皮成長因子受容体]]ファミリー分子(ErbB1-4)に、おのおの異なる親和性で結合する。ErbB1-4は共通した構造をもち、細胞外領域(リガンド結合部、2量体結合部)、細胞膜貫通領域、細胞内領域([[チロシンキナーゼ]]酵素部)からなる。細胞外領域にリガンドが結合すると、受容体の酵素部が活性化するとともに、相互アフィニテイーが上がり、2量体を形成しやすくなる。通常、2量体を形成すると、相手側のErbB分子の細胞内領域を[[リン酸化]]する。表1にあるようにErbB分子は、多くの組み合わせで2量体を形成するが、ホモ2量体でない限り、リガンド結合ErbB分子とシグナル伝達ErbB分子は、異なるかもしれないことに注意しなくてはならない。  


<br>  
<br>  
49行目: 49行目:
|-
|-
|  
|  
ErB1<br>  
ErbB1<br>  


(Her1)<br>  
(Her1)<br>  
56行目: 56行目:
EGF  
EGF  


TGFalpha<br>  
TGFα<br>  


HB-EGF<br>  
HB-EGF<br>  
74行目: 74行目:


|  
|  
PLCgamma
PLCγ


Cb1<br>  
Cb1<br>  
187行目: 187行目:
STAT5A  
STAT5A  


PSD95<br>  
PSD-95<br>  


ICD<br>  
ICD<br>  
211行目: 211行目:
== 生理活性  ==
== 生理活性  ==


 ErbB3とErbB2はおもにオリゴデンドロサイトに発現していて、その前駆細胞の増殖と分化に関与していることが知られている。オリゴデンドロサイトやシュワン細胞、そのミエリン形成の研究から、細胞間接着分子のように、神経細胞の形質膜上に存在する非可溶性のNRGが、グリア細胞膜上のErbB3と相互作用をしている可能性も示唆されている。
 ErbB3とErbB2はおもに[[オリゴデンドロサイト]]に発現していて、その前駆細胞の増殖と分化に関与していることが知られている。オリゴデンドロサイトや[[シュワン細胞]]、その[[ミエリン]]形成の研究から、[[細胞間接着分子]]のように、神経細胞の[[形質膜]]上に存在する非可溶性のNRGが、グリア細胞膜上のErbB3と相互作用をしている可能性も示唆されている。
 
 ErbB4分子は、おもに[[小脳]]プルキンエ細胞をふくむ[[GABA]]神経細胞に多量に発現しているとともに、[[視床下部]][[アストロサイト]]や[[錐体細胞]]にも発現が確認される。


<br>  
<br>  


<br> 文献 1)Mei L and Xiong WC: Nat Rev Neurosci 9&nbsp;: 437-452, 2008. 2)Bublil EM and, Yarden Y: Curr Opin Cell Biol 19&nbsp;: 124-134, 2007。 3)Higashiyama S, et al: Cancer Sci 99&nbsp;: 214-220, 2008.
<br> 文献 1)Mei L and Xiong WC: Nat Rev Neurosci 9&nbsp;: 437-452, 2008. 2)Bublil EM and, Yarden Y: Curr Opin Cell Biol 19&nbsp;: 124-134, 2007。 3)Higashiyama S, et al: Cancer Sci 99&nbsp;: 214-220, 2008.