「外側膝状核」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
 
73行目: 73行目:


==== 介在細胞及び膝状体周辺核細胞からのGABA抑制による中継細胞活動の修飾 ====
==== 介在細胞及び膝状体周辺核細胞からのGABA抑制による中継細胞活動の修飾 ====
 LGNd各層には中継細胞より小さい細胞体を持ち樹状突起を層の向きにほぼ垂直に張る介在細胞が存在する<ref name=Jones2007 /><ref name= Sherman2003 /> [1,2]。これらの細胞は軸索を核外に伸ばさずに近隣の中継細胞の[[樹状突起]]に接続する。[[GABA]]を[[伝達物質]]として中継細胞活動を抑制していると考えられている。この抑制は網膜神経節細胞の受容野で既にみられる反応対立型(中心がオンの場合、周辺はオフ反応、逆に中心がオフの場合、周辺がオン反応を示す)の[[周辺抑制]]をさらに強化していると考えられている。つまり視覚情報の空間分解能を改善するのに役立っている。また、M cell(或いはY cell)のシステムでは、中継細胞の出力軸索が[[側枝]]を介在細胞に伸ばしその抑制活動によって中継細胞の興奮を中断するという回帰性抑制回路を作動させる。この回帰性抑制は中継機能の時間分解能の改善に役立っていると考えられている。また、この介在細胞による抑制回路は視覚情報中継を減弱或いは遮断するなど後述する[[中脳]]など他の領域からの修飾作用点となっている。
 LGNd各層には中継細胞より小さい細胞体を持ち樹状突起を層の向きにほぼ垂直に張る介在細胞が存在する<ref name=Jones2007 /><ref name= Sherman2003 />。これらの細胞は軸索を核外に伸ばさずに近隣の中継細胞の[[樹状突起]]に接続する。[[GABA]]を[[伝達物質]]として中継細胞活動を抑制していると考えられている。この抑制は網膜神経節細胞の受容野で既にみられる反応対立型(中心がオンの場合、周辺はオフ反応、逆に中心がオフの場合、周辺がオン反応を示す)の[[周辺抑制]]をさらに強化していると考えられている。つまり視覚情報の空間分解能を改善するのに役立っている。また、M cell(或いはY cell)のシステムでは、中継細胞の出力軸索が[[側枝]]を介在細胞に伸ばしその抑制活動によって中継細胞の興奮を中断するという回帰性抑制回路を作動させる。この回帰性抑制は中継機能の時間分解能の改善に役立っていると考えられている。また、この介在細胞による抑制回路は視覚情報中継を減弱或いは遮断するなど後述する[[中脳]]など他の領域からの修飾作用点となっている。


 視床の外側には外側膝状核のみならず体性感覚中継核である視床[[腹側基底核]]等を覆う形で[[視床網様核]]が存在する。この核は外側膝状体の場合は、[[膝状体周辺核]](perigeniculate nucleus)と呼ばれる。この核の神経細胞は中継細胞が大脳皮質に送る軸索の側枝を受け、その中継細胞にGABA性の抑制性シグナルを送り返す。この膝状体周辺核からの抑制も介在細胞からの抑制と同様、周辺抑制の強化など情報中継機能の修飾に貢献していると想定されている。
 視床の外側には外側膝状核のみならず体性感覚中継核である視床[[腹側基底核]]等を覆う形で[[視床網様核]]が存在する。この核は外側膝状体の場合は、[[膝状体周辺核]](perigeniculate nucleus)と呼ばれる。この核の神経細胞は中継細胞が大脳皮質に送る軸索の側枝を受け、その中継細胞にGABA性の抑制性シグナルを送り返す。この膝状体周辺核からの抑制も介在細胞からの抑制と同様、周辺抑制の強化など情報中継機能の修飾に貢献していると想定されている。
83行目: 83行目:
 LGNdには投射先である大脳皮質視覚野より下向性(遠心性)の投射がある。ネコやサルなど層構造の明瞭なLGNdにはその投射線維の終末は単一の層内に分布するが、ラット、マウスなど層構造が明瞭でないLGNdでは全体に分布するという。ただ、この遠心性投射には中継細胞よりは少し緩いが網膜部位対応があり、元の中継細胞とその近傍に情報を送り返すというフィードバック回路を形成する。この大脳皮質→LGNd遠心性投射は量的にはLGNd→大脳皮質の求心性投射を陵駕する濃密なもので、ネコのLGNdでは網膜神経節細胞軸索が形成するシナプスは全シナプスの5-10%であるのに対して大脳皮質からの遠心性投射軸索が形成するシナプスは30-50%を占めると推測されている<ref name=Sillito2003>'''Sillito, A.M. & Jones, H.E. (2003).'''<br>The Visual Neurosciences (Eds. Chalupa L.M. & Werner J.S.) Chapter 37 Feedback Systems in Visual Processing. The MIT Press, Cambridge Massachusetts USA & London UK. [https://doi.org/10.7551/mitpress/7131.003.0044 [DOI<nowiki>]</nowiki>]</ref>。ただ、前者は樹状突起近位部にあるのに対して後者は遠位部に分布する。すなわち網膜からの入力は効率よく中継細胞を駆動できるのに対して皮質からの遠心性投射の効率は比較的低い。したがって、前者をdriver synapse 後者をmodulator synapseと考える場合がある。また、大脳皮質からの遠心性投射線維は前述した介在細胞や膝状体周辺核の抑制性細胞にも投射している。  
 LGNdには投射先である大脳皮質視覚野より下向性(遠心性)の投射がある。ネコやサルなど層構造の明瞭なLGNdにはその投射線維の終末は単一の層内に分布するが、ラット、マウスなど層構造が明瞭でないLGNdでは全体に分布するという。ただ、この遠心性投射には中継細胞よりは少し緩いが網膜部位対応があり、元の中継細胞とその近傍に情報を送り返すというフィードバック回路を形成する。この大脳皮質→LGNd遠心性投射は量的にはLGNd→大脳皮質の求心性投射を陵駕する濃密なもので、ネコのLGNdでは網膜神経節細胞軸索が形成するシナプスは全シナプスの5-10%であるのに対して大脳皮質からの遠心性投射軸索が形成するシナプスは30-50%を占めると推測されている<ref name=Sillito2003>'''Sillito, A.M. & Jones, H.E. (2003).'''<br>The Visual Neurosciences (Eds. Chalupa L.M. & Werner J.S.) Chapter 37 Feedback Systems in Visual Processing. The MIT Press, Cambridge Massachusetts USA & London UK. [https://doi.org/10.7551/mitpress/7131.003.0044 [DOI<nowiki>]</nowiki>]</ref>。ただ、前者は樹状突起近位部にあるのに対して後者は遠位部に分布する。すなわち網膜からの入力は効率よく中継細胞を駆動できるのに対して皮質からの遠心性投射の効率は比較的低い。したがって、前者をdriver synapse 後者をmodulator synapseと考える場合がある。また、大脳皮質からの遠心性投射線維は前述した介在細胞や膝状体周辺核の抑制性細胞にも投射している。  


 このように量的には多いが、質的に個々の結合の伝達効率という面からみると必ずしも強くない大量の遠心性投射の機能的意義に関しては未だ充分には解明されていない。Tsumotoらは、同時記録したLGNd中継細胞と大脳皮質細胞活動の相互相関解析によって受容野が対応する場合は興奮性に作用し、周辺のLGNd細胞には抑制性に作用することを明らかにした<ref name=Tsumoto1978><pubmed>210031</pubmed></ref>。すなわち、このフィードバック投射は視覚情報処理の空間分解能の先鋭化に寄与している可能性を示した。その後、Sillitoらは線状の刺激が長くなると反応が減弱するという長さチューニング等最適刺激の先鋭化に貢献していると報告している<ref name=Sillito2003 />[6]。ただ、これらの知見は未だ散発的でこの量的には求心性投射をはるかに陵駕する大量の遠心性投射の機能的意義の全貌は未だ明らかでない。
 このように量的には多いが、質的に個々の結合の伝達効率という面からみると必ずしも強くない大量の遠心性投射の機能的意義に関しては未だ充分には解明されていない。Tsumotoらは、同時記録したLGNd中継細胞と大脳皮質細胞活動の相互相関解析によって受容野が対応する場合は興奮性に作用し、周辺のLGNd細胞には抑制性に作用することを明らかにした<ref name=Tsumoto1978><pubmed>210031</pubmed></ref>。すなわち、このフィードバック投射は視覚情報処理の空間分解能の先鋭化に寄与している可能性を示した。その後、Sillitoらは線状の刺激が長くなると反応が減弱するという長さチューニング等最適刺激の先鋭化に貢献していると報告している<ref name=Sillito2003 />。ただ、これらの知見は未だ散発的でこの量的には求心性投射をはるかに陵駕する大量の遠心性投射の機能的意義の全貌は未だ明らかでない。


== 腹側核細胞の機能 ==
== 腹側核細胞の機能 ==
 LGNvはサルやネコではLGNdに比してかなり小さいが、ラットやマウスではLGNdとほぼ同じ大きさであることなどからLGNvは主にラットやマウスで研究されてきた。このLGNvは構造的には、[[外側大細胞層]](magnocellular external lamina)と[[内側小細胞層]](parvocellular internal lamina)に分けられる<ref name=Ciftcioglu2020><pubmed>32350041</pubmed></ref>。前者は網膜神経節細胞より密な投射を受けるが、後者はほとんど網膜より投射を受けない。また、両者とも大脳皮質に直接軸索を送る細胞が存在しないという点でLGNdとは大きく異なる。さらに、細胞の大部分がGABA作動性であるという点でもLGNdと異なっている。外側大細胞層の細胞は光刺激に反応するがその受容野はLGNdの中継細胞に比べて大きく、その反応は確実性を欠き刺激の点滅に対する追従性が弱いという<ref name=Ciftcioglu2020 />[3]。これは網膜神経節細胞軸索の[[シナプス前終末]]がLGNvではLGNdより小さく単純であるという形態学的な知見に対応するという。LGNv細胞は、外側大細胞層細胞でも、網膜以外の種々の領域からも入力を受けている。最も顕著なものは[[上丘]]浅層からである。上丘浅層は、視覚刺激の方向を向く、接近する、或いは離れる(逃げる)等の視覚誘発運動や眼球運動に関与しているので、LGNv細胞もこれらの運動に関与していると想定されている<ref name=Monavarfeshani2017><pubmed>28965517</pubmed></ref>。その他、前述の[[外側膝状核#脳幹からの変調作用|脳幹からの変調作用]]の節で言及した脳幹の諸領域からの入力も受けている。
 LGNvはサルやネコではLGNdに比してかなり小さいが、ラットやマウスではLGNdとほぼ同じ大きさであることなどからLGNvは主にラットやマウスで研究されてきた。このLGNvは構造的には、[[外側大細胞層]](magnocellular external lamina)と[[内側小細胞層]](parvocellular internal lamina)に分けられる<ref name=Ciftcioglu2020><pubmed>32350041</pubmed></ref>。前者は網膜神経節細胞より密な投射を受けるが、後者はほとんど網膜より投射を受けない。また、両者とも大脳皮質に直接軸索を送る細胞が存在しないという点でLGNdとは大きく異なる。さらに、細胞の大部分がGABA作動性であるという点でもLGNdと異なっている。外側大細胞層の細胞は光刺激に反応するがその受容野はLGNdの中継細胞に比べて大きく、その反応は確実性を欠き刺激の点滅に対する追従性が弱いという<ref name=Ciftcioglu2020 />。これは網膜神経節細胞軸索の[[シナプス前終末]]がLGNvではLGNdより小さく単純であるという形態学的な知見に対応するという。LGNv細胞は、外側大細胞層細胞でも、網膜以外の種々の領域からも入力を受けている。最も顕著なものは[[上丘]]浅層からである。上丘浅層は、視覚刺激の方向を向く、接近する、或いは離れる(逃げる)等の視覚誘発運動や眼球運動に関与しているので、LGNv細胞もこれらの運動に関与していると想定されている<ref name=Monavarfeshani2017><pubmed>28965517</pubmed></ref>。その他、前述の[[外側膝状核#脳幹からの変調作用|脳幹からの変調作用]]の節で言及した脳幹の諸領域からの入力も受けている。


 出力先としてLGNv細胞の多くは上丘浅層に軸索を送っている。また、[[視交叉上核]]([[suprachiasmatic nucleus]])にも投射しているのでLGNv細胞の一部は[[概日リズム]]の修飾にも関与していると想定されている<ref name=Monavarfeshani2017 />[4]。ただ、上記のようにLGNvの細胞の多くはGABA作動性で核外の離れた領域に抑制性の投射をしているので、GABA作動性遠隔投射回路が脱抑制を起こすという大脳基底核回路機能との類推から上丘における抑制回路を抑えて[[視覚誘発運動]]を惹起する機能があるのではないかとの推測もある<ref name=Gokce2003><pubmed>12906030</pubmed></ref>。
 出力先としてLGNv細胞の多くは上丘浅層に軸索を送っている。また、[[視交叉上核]]([[suprachiasmatic nucleus]])にも投射しているのでLGNv細胞の一部は[[概日リズム]]の修飾にも関与していると想定されている<ref name=Monavarfeshani2017 />。ただ、上記のようにLGNvの細胞の多くはGABA作動性で核外の離れた領域に抑制性の投射をしているので、GABA作動性遠隔投射回路が脱抑制を起こすという大脳基底核回路機能との類推から上丘における抑制回路を抑えて[[視覚誘発運動]]を惹起する機能があるのではないかとの推測もある<ref name=Gokce2003><pubmed>12906030</pubmed></ref>。


== 関連項目 ==
== 関連項目 ==