「小胞モノアミントランスポーター」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
19行目: 19行目:
[[Image:VMAT二次構造その2.jpg|thumb|250px|'''図1.VMATの二次構造'''<br>文献<ref><pubmed>12827358</pubmed></ref>から改変]]  
[[Image:VMAT二次構造その2.jpg|thumb|250px|'''図1.VMATの二次構造'''<br>文献<ref><pubmed>12827358</pubmed></ref>から改変]]  


 上述したように、VMAT1とVMAT2は別々の遺伝子によりコードされているが、両者の配列相同性および構造は極めて類似している。[[細胞膜]][[モノアミントランスポーター]]と同じく、12個の膜貫通ドメイン(TMD1~12)をもつ[[wikipedia:ja:膜タンパク質|膜タンパク質]]で、アミノ末端(N末端)とカルボキシ末端(C末端)は細胞質側に位置する(図1)。1番目と2番目の膜貫通ドメイン(TMD1~2)の間には、小胞内に面するループ構造をもつ。膜貫通領域の予測法であるハイドロパシーモデルでは、このループ構造に数個の[[wikipedia:ja:グリコシル化|グリコシル化]]部位が存在すると予測されている<ref><pubmed>20135628</pubmed></ref>。  
 上述したように、VMAT1とVMAT2は別々の遺伝子によりコードされているが、両者の配列相同性および構造は極めて類似している。[[細胞膜]][[モノアミントランスポーター]]と同じく、12個の膜貫通ドメイン(TMD1~12)をもつ[[wikipedia:ja:膜タンパク質|膜タンパク質]]で、アミノ末端(N末端)とカルボキシ末端(C末端)は細胞質側に位置する(図1参照)。1番目と2番目の膜貫通ドメイン(TMD1~2)の間には、小胞内に面するループ構造をもつ。膜貫通領域の予測法であるハイドロパシーモデルでは、このループ構造に数個の[[wikipedia:ja:グリコシル化|グリコシル化]]部位が存在すると予測されている<ref><pubmed>20135628</pubmed></ref>。  




26行目: 26行目:
[[Image:モノアミン貯蔵の仕組み.jpg|thumb|250px|'''図2.VMATによる小胞内へのモノアミン取り込み機構'''<br>文献<ref name=ref1 />から改変]]
[[Image:モノアミン貯蔵の仕組み.jpg|thumb|250px|'''図2.VMATによる小胞内へのモノアミン取り込み機構'''<br>文献<ref name=ref1 />から改変]]


 VMATは、小胞内外のH<sup>+</sup>の[[電気化学的勾配]]を駆動力としてモノアミンを小胞内に輸送し、開口放出に備えて貯蔵している。小胞内へのモノアミン貯蔵は、[[神経活動]]に依存した開口放出に備えるだけでなく、モノアミンの合成と分解を調節する上でも必要である。VMAT1とVMAT2の場合、1分子のモノアミンを取り込むために、2分子のH<sup>+</sup>が必要となる。H<sup>+</sup>は[[wikipedia:V-ATPase|V型ATPアーゼ]]の[[wikipedia:ja:ATP|ATP]]加水分解によって産生され、小胞内に移動される。これにより膜内外でpHの勾配が生じるため、VMATはH<sup>+</sup>とモノアミンを[[対向輸送]]することで小胞内にモノアミンを取り込んでいる(図2)<ref name=ref1><pubmed>19259829</pubmed></ref>。また、[[wikipedia:ClC3|ClC3]]や[[wikipedia:ClC7|ClC7]]などのCl<sup>-</sup>チャネルを通ってCl<sup>-</sup>イオンが小胞内に出入りすることで、膜内外における電荷のバランスが維持される。これにより小胞膜上のV型ATPアーゼとVMATは個別に働くことができ、効率のよいモノアミンの貯蔵が可能となる。V型ATPアーゼ、あるいはCl<sup>-</sup>チャネルが阻害されると、小胞内のpHが酸性に維持されず、モノアミンを小胞内に貯蔵できなくなる<ref><pubmed>12122145</pubmed></ref><ref><pubmed>11864736</pubmed></ref>。   
 VMATは、小胞内外のH<sup>+</sup>の[[電気化学的勾配]]を駆動力としてモノアミンを小胞内に輸送し、開口放出に備えて貯蔵している。小胞内へのモノアミン貯蔵は、[[神経活動]]に依存した開口放出に備えるだけでなく、モノアミンの合成と分解を調節する上でも必要である。VMAT1とVMAT2の場合、1分子のモノアミンを取り込むために、2分子のH<sup>+</sup>が必要となる。H<sup>+</sup>は[[wikipedia:V-ATPase|V型ATPアーゼ]]の[[wikipedia:ja:ATP|ATP]]加水分解によって産生され、小胞内に移動される。これにより膜内外でpHの勾配が生じるため、VMATはH<sup>+</sup>とモノアミンを[[対向輸送]]することで小胞内にモノアミンを取り込んでいる(図2参照)<ref name=ref1><pubmed>19259829</pubmed></ref>。また、[[wikipedia:ClC3|ClC3]]や[[wikipedia:ClC7|ClC7]]などのCl<sup>-</sup>チャネルを通ってCl<sup>-</sup>イオンが小胞内に出入りすることで、膜内外における電荷のバランスが維持される。これにより小胞膜上のV型ATPアーゼとVMATは個別に働くことができ、効率のよいモノアミンの貯蔵が可能となる。V型ATPアーゼ、あるいはCl<sup>-</sup>チャネルが阻害されると、小胞内のpHが酸性に維持されず、モノアミンを小胞内に貯蔵できなくなる<ref><pubmed>12122145</pubmed></ref><ref><pubmed>11864736</pubmed></ref>。   




40行目: 40行目:
[[Image:依存性薬物とVMAT.jpg|thumb|250px|'''図3.モノアミントランスポーターに対する精神刺激薬の作用'''<br>文献<ref name=ref2 />から改変]]
[[Image:依存性薬物とVMAT.jpg|thumb|250px|'''図3.モノアミントランスポーターに対する精神刺激薬の作用'''<br>文献<ref name=ref2 />から改変]]


 精神刺激薬である[[コカイン]]、[[メチルフェニデート]]、メタンフェタミンや[[アンフェタミン]]は、モノアミントランスポーターを標的分子としている。コカインやメチルフェニデートが細胞膜モノアミントランスポーターの阻害により薬理効果を生じる一方、メタンフェタミンやアンフェタミンはシナプス小胞膜上のVMAT2にも作用する(図3)<ref name=ref2><pubmed>17825265</pubmed></ref>。VMAT2ヘテロ欠損マウスでは、コカインではなく、アンフェタミン投与による行動感作の形成、条件付け場所嗜好性がほとんど見られないことから、アンフェタミンの報酬効果がVMAT2に依存することが示唆されている<ref><pubmed>9275230</pubmed></ref><ref><pubmed>17377774</pubmed></ref><ref><pubmed>11099463</pubmed></ref><ref><pubmed>21118356</pubmed></ref>。
 精神刺激薬である[[コカイン]]、[[メチルフェニデート]]、メタンフェタミンや[[アンフェタミン]]は、モノアミントランスポーターを標的分子としている(表参照)。コカインやメチルフェニデートが細胞膜モノアミントランスポーターの阻害により薬理効果を生じる一方、メタンフェタミンやアンフェタミンはシナプス小胞膜上のVMAT2にも作用する(図3参照)<ref name=ref2><pubmed>17825265</pubmed></ref>。VMAT2ヘテロ欠損マウスでは、コカインではなく、アンフェタミン投与による行動感作の形成、条件付け場所嗜好性がほとんど見られないことから、アンフェタミンの報酬効果がVMAT2に依存することが示唆されている<ref><pubmed>9275230</pubmed></ref><ref><pubmed>17377774</pubmed></ref><ref><pubmed>11099463</pubmed></ref><ref><pubmed>21118356</pubmed></ref>。


 ドーパミン神経終末において、アンフェタミンやメタンフェタミンは、VMAT2によるシナプス小胞内への取り込みを阻害するだけでなく、貯蔵されているドーパミンを細胞質へ放出させることにより、小胞内のドーパミン量を減少させるとともに、細胞質のドーパミン量を増加させる。また、これらの薬剤を投与すると、細胞質に局在するVMAT2を含むシナプス小胞が細胞質外に移動し、細胞質でのドーパミン取り込みが減少する<ref name=ref3><pubmed>14612158</pubmed></ref>。メタンフェタミンを投与した[[wikipedia:ja:ラット|ラット]]脳画分を用いた実験では、粗シナプトソーム画分、及び細胞質画分でVMAT2のタンパク質量が減少することが示されている<ref name=ref4><pubmed>16594636</pubmed></ref>。一方で、コカインやメチルフェニデートも、VMAT2を含むシナプス小胞の細胞内局在を変化させる。これらの薬剤を投与すると、シナプス膜近傍に局在するシナプス小胞が細胞質へと移動し、細胞質でのド-パミン取り込みを増加させるので、細胞質のドーパミン量は減少する<ref name=ref3 />。コカインを投与したラット脳画分を用いた実験では、VMAT2のタンパク質量が[[シナプス]]膜画分では減少し、細胞質画分では上昇することが示されている<ref name=ref4 />。コカインやメタンフェタミン投与による、VMAT2を含むシナプス小胞の局在変化については、ドーパミン受容体の1つ、ドーパミン[[D2受容体|D<sub>2</sub>受容体]]の関与が指摘されている。
 ドーパミン神経終末において、アンフェタミンやメタンフェタミンは、VMAT2によるシナプス小胞内への取り込みを阻害するだけでなく、貯蔵されているドーパミンを細胞質へ放出させることにより、小胞内のドーパミン量を減少させるとともに、細胞質のドーパミン量を増加させる。また、これらの薬剤を投与すると、細胞質に局在するVMAT2を含むシナプス小胞が細胞質外に移動し、細胞質でのドーパミン取り込みが減少する<ref name=ref3><pubmed>14612158</pubmed></ref>。メタンフェタミンを投与した[[wikipedia:ja:ラット|ラット]]脳画分を用いた実験では、粗シナプトソーム画分、及び細胞質画分でVMAT2のタンパク質量が減少することが示されている<ref name=ref4><pubmed>16594636</pubmed></ref>。一方で、コカインやメチルフェニデートも、VMAT2を含むシナプス小胞の細胞内局在を変化させる。これらの薬剤を投与すると、シナプス膜近傍に局在するシナプス小胞が細胞質へと移動し、細胞質でのド-パミン取り込みを増加させるので、細胞質のドーパミン量は減少する<ref name=ref3 />。コカインを投与したラット脳画分を用いた実験では、VMAT2のタンパク質量が[[シナプス]]膜画分では減少し、細胞質画分では上昇することが示されている<ref name=ref4 />。コカインやメタンフェタミン投与による、VMAT2を含むシナプス小胞の局在変化については、ドーパミン受容体の1つ、ドーパミン[[D2受容体|D<sub>2</sub>受容体]]の関与が指摘されている。
76

回編集