55
回編集
細編集の要約なし |
細編集の要約なし |
||
14行目: | 14行目: | ||
===胎仔や組織の細胞の電気穿孔法=== | ===胎仔や組織の細胞の電気穿孔法=== | ||
子宮内のマウス胎仔やニワトリ胚、体外培養胚、器官培養などの細胞に関しては、核酸を注入後、ピンセット型電極やニードル電極などで胎仔や組織を挟み、低電圧で長時間の矩形波パルスを複数回与える。例えば、胎生13.5日のマウス胎仔には40 V, 50 msecの矩形波パルスを1秒に1回ずつ5回与えるなどの条件が使われ、至適電圧は胎仔の発生のステージで異なる。ほとんど全てのマウス胎仔に遺伝子導入できる条件でも、電気穿孔で細胞死が増加しないことが確認されている<ref><pubmed> 13583250 </pubmed></ref>[15, 16]。電極と遺伝子導入される細胞が近接している必要はなく、子宮の外側から電気パルスを与えても脳内などへの遺伝子導入が可能である。パルス作製装置にはBEX社のCUY21などが用いられる。siRNAなどのRNAを導入することにより、標的タンパク質の発現を生体内で効率よく抑えることにも用いられる[<ref><pubmed> 13583250 </pubmed></ref>17]。<br> 生体内の細胞への電気穿孔はin vivo electroporationと呼ばれる。体外培養胚などへの電気穿孔はex vivo electroporationと呼ばれることもある。マウス胎仔のin vivo electroporationでは、子宮の外からDNAなどを注入し、子宮の外側を電極で挟むことで電気穿孔するin utero electroporationが一般的である。in utero electroporation後の胎仔は子宮とともに母体に戻せば、生育でき出産も可能である<ref><pubmed> 13583250 </pubmed></ref>[14]。一方、胎生12.5日以前では子宮の外から胎仔が見にくいなどの理由により、子宮壁を切開後にDNAなどを注入し、胎仔の入った卵黄囊を電極で挟み電気穿孔するexo utero electroporationも用いられる<ref><pubmed> 13583250 </pubmed></ref>[14, 18]。exo utero electroporationを施した胎仔は子宮壁を縫わずに母体に戻すことで生育可能であるが、出産後の仔マウスが必要な場合、母マウスは自力で出産できないため出産期に帝王切開を要する。<br> 脳室に注入された分子は、脳室から漏れ出なければ拡散による希釈が限定的であるため、脳室の周囲の細胞への導入は比較的容易である。胎仔期の神経幹細胞や神経前駆細胞は脳室に接しており、遺伝子導入の格好の標的となる。大脳などでは、発生の時期により神経幹細胞から生み出される神経細胞の種類が異なるため、時期を選ぶことにより特定の種類の神経細胞のみで遺伝子を発現することが可能となる<ref><pubmed> 13583250 </pubmed></ref>[14, 15]。同一の胎仔に異なる時期で2回電気穿孔することもできる<ref><pubmed> 13583250 </pubmed></ref>[15]。<br> ニワトリやマウス以外の動物にも応用されており、大脳の他にも脊髄や小脳、網膜、筋肉、精巣など多くの組織でin vivo electroporationを用いた遺伝子導入に成功している<ref><pubmed> 13583250 </pubmed></ref>[17-21]。<br> 胎仔や組織のレベルで遺伝子を解析できる点が最大の長所であり、熟練すればマウス胎仔で9割近い生存率と9割を越える遺伝子導入効率が得られるが、技術的に注意を要する点があるのが欠点である。遺伝子は陽極側の細胞のみに限定的に導入される特長を有するため、陰極側の遺伝子導入されない部位との比較が容易であり、遺伝子の機能や発現制御機構の解析に威力を発揮する。 | 子宮内のマウス胎仔やニワトリ胚、体外培養胚、器官培養などの細胞に関しては、核酸を注入後、ピンセット型電極やニードル電極などで胎仔や組織を挟み、低電圧で長時間の矩形波パルスを複数回与える。例えば、胎生13.5日のマウス胎仔には40 V, 50 msecの矩形波パルスを1秒に1回ずつ5回与えるなどの条件が使われ、至適電圧は胎仔の発生のステージで異なる。ほとんど全てのマウス胎仔に遺伝子導入できる条件でも、電気穿孔で細胞死が増加しないことが確認されている<ref><pubmed> 13583250 </pubmed></ref>[15, 16]。電極と遺伝子導入される細胞が近接している必要はなく、子宮の外側から電気パルスを与えても脳内などへの遺伝子導入が可能である。パルス作製装置にはBEX社のCUY21などが用いられる。siRNAなどのRNAを導入することにより、標的タンパク質の発現を生体内で効率よく抑えることにも用いられる[<ref><pubmed> 13583250 </pubmed></ref>17]。<br> 生体内の細胞への電気穿孔はin vivo electroporationと呼ばれる。体外培養胚などへの電気穿孔はex vivo electroporationと呼ばれることもある。マウス胎仔のin vivo electroporationでは、子宮の外からDNAなどを注入し、子宮の外側を電極で挟むことで電気穿孔するin utero electroporationが一般的である。in utero electroporation後の胎仔は子宮とともに母体に戻せば、生育でき出産も可能である<ref><pubmed> 13583250 </pubmed></ref>[14]。一方、胎生12.5日以前では子宮の外から胎仔が見にくいなどの理由により、子宮壁を切開後にDNAなどを注入し、胎仔の入った卵黄囊を電極で挟み電気穿孔するexo utero electroporationも用いられる<ref><pubmed> 13583250 </pubmed></ref>[14, 18]。exo utero electroporationを施した胎仔は子宮壁を縫わずに母体に戻すことで生育可能であるが、出産後の仔マウスが必要な場合、母マウスは自力で出産できないため出産期に帝王切開を要する。<br> 脳室に注入された分子は、脳室から漏れ出なければ拡散による希釈が限定的であるため、脳室の周囲の細胞への導入は比較的容易である。胎仔期の神経幹細胞や神経前駆細胞は脳室に接しており、遺伝子導入の格好の標的となる。大脳などでは、発生の時期により神経幹細胞から生み出される神経細胞の種類が異なるため、時期を選ぶことにより特定の種類の神経細胞のみで遺伝子を発現することが可能となる<ref><pubmed> 13583250 </pubmed></ref>[14, 15]。同一の胎仔に異なる時期で2回電気穿孔することもできる<ref><pubmed> 13583250 </pubmed></ref>[15]。<br> ニワトリやマウス以外の動物にも応用されており、大脳の他にも脊髄や小脳、網膜、筋肉、精巣など多くの組織でin vivo electroporationを用いた遺伝子導入に成功している<ref><pubmed> 13583250 </pubmed></ref>[17-21]。<br> 胎仔や組織のレベルで遺伝子を解析できる点が最大の長所であり、熟練すればマウス胎仔で9割近い生存率と9割を越える遺伝子導入効率が得られるが、技術的に注意を要する点があるのが欠点である。遺伝子は陽極側の細胞のみに限定的に導入される特長を有するため、陰極側の遺伝子導入されない部位との比較が容易であり、遺伝子の機能や発現制御機構の解析に威力を発揮する。 | ||
==原理== | |||
培養細胞から個体まで広く使われる手法であるが、原理には不明な点が多い。単離細胞で使われる単一の減衰波パルスによる電気穿孔と、胎仔などで用いられる複数回の矩形波パルスによる電気穿孔では、メカニズムが異なる可能性がある。後者では、遺伝子導入される細胞が陽極側に限定されることなどから、単に細胞膜に穴が空くというより、電気パルスによる細胞膜の活性化と電気泳動と類似の核酸の移動の両者が総合的に働いて遺伝子が細胞内に導入されると考えられている<ref><pubmed> 13583250 </pubmed></ref>[7]。また、単一の減衰波パルスの場合においても、低浸透圧下の赤血球で観察されたのと同様な穴が等張液の条件で作られるのかは不明であり、electroporationよりもelectropermeabilizationという言葉を使うべきとの議論もある<ref><pubmed> 13583250 </pubmed></ref>[7]。<br> | |||
== 参考文献 == | == 参考文献 == | ||
21行目: | 24行目: | ||
同義語:エレクトロポレーション | 同義語:エレクトロポレーション | ||
執筆者:斎藤哲一郎、担当編集委員:村上富士夫) |
回編集