「電位依存性カルシウムチャネル」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
7行目: 7行目:
== 分類、構造、発現<br>  ==
== 分類、構造、発現<br>  ==


 VDCCは、形質膜の脱分極を感知して活性化開口し、細胞外から細胞内へCa<sup>2+</sup>を選択的に透過させるイオンチャネルであり、細胞の電気的興奮をCa<sup>2+</sup>依存的な生理応答に変換する役割を担う。開口する電位によりVDCCは、高電位 (~−20 mV)で活性化するL型 (Ca<sub>v</sub>1)および非L型 (Ca<sub>v</sub>2) と低電位 (~−60 mV) で活性するT型 (Ca<sub>v</sub>3) に大別される<ref name="ref1"><pubmed> 6087159 </pubmed></ref><ref><pubmed>2582115</pubmed></ref><ref name="ref3"><pubmed>    16382099</pubmed></ref>。高電位活性化型のVDCCは、α<sub>1</sub>、α<sub>2</sub>δ、βおよびγサブユニットから成るヘテロ4量体を形成すると考えられている (図1)。[[Image:Yasuomori fig 1.jpg|thumb|right|300px|<b>図1. VDCCのサブユニット構造</b><br />高電位活性化型のVDCCは、α<sub>1</sub>、α<sub>2</sub>δ、βおよびγサブユニットから成るヘテロ4量体を形成する。]]<br>  
 VDCCは、形質膜の脱分極を感知して活性化開口し、細胞外から細胞内へCa<sup>2+</sup>を選択的に透過させるイオンチャネルであり、細胞の電気的興奮をCa<sup>2+</sup>依存的な生理応答に変換する役割を担う。開口する電位によりVDCCは、高電位 (~−20 mV)で活性化するL型 (Ca<sub>v</sub>1)および非L型 (Ca<sub>v</sub>2) と低電位 (~−60 mV) で活性するT型 (Ca<sub>v</sub>3) に大別される<ref name="ref1"><pubmed> 6087159 </pubmed></ref><ref><pubmed>2582115</pubmed></ref><ref name="ref3"><pubmed>    16382099</pubmed></ref>。高電位活性化型のVDCCは、α<sub>1</sub>、α<sub>2</sub>δ、βおよびγサブユニットから成るヘテロ4量体を形成すると考えられている (図1)。[[Image:Yasuomori fig 1.jpg|thumb|right|300px|<b>図1. VDCCのサブユニット構造</b><br />高電位活性化型のVDCCは、α<sub>1</sub>、α<sub>2</sub>δ、βおよびγサブユニットから成るヘテロ4量体を形成する。]]<br>  


=== α<sub>1</sub>サブユニット<br>  ===
=== α<sub>1</sub>サブユニット<br>  ===


 電位センサーとチャネル孔を有するα<sub>1</sub>サブユニットは、おおよそ2000アミノ酸残基からなるタンパク質であり、膜貫通領域S1~S6の構造単位が4回繰り返す (リピートI~IV) (図2)。S5領域とS6領域の間がCa<sup>2+</sup>を選択的に透過させるチャネル孔を形成し、S4領域が電位センサーとして働く。α<sub>1</sub>サブユニットは10種類の異なる遺伝子Ca<sub>v</sub>によりコードされて、電気生理学的特性や薬理学的特性による機能分類 (L, P/Q, N, R, T) に対応付けられている (図3、4)<ref name="ref4"><pubmed>21746798</pubmed></ref>。[[Image:Yasuomori fig 3.jpg|thumb|right|250px|<b>図3. α1サブユニットの進化系統樹</b>]]<br>  
 電位センサーとチャネル孔を有するα<sub>1</sub>サブユニットは、おおよそ2000アミノ酸残基からなるタンパク質であり、膜貫通領域S1~S6の構造単位が4回繰り返す (リピートI~IV) 。S5領域とS6領域の間がCa<sup>2+</sup>を選択的に透過させるチャネル孔を形成し、S4領域が電位センサーとして働く。α<sub>1</sub>サブユニットは10種類の異なる遺伝子Ca<sub>v</sub>によりコードされて、電気生理学的特性や薬理学的特性による機能分類 (L, P/Q, N, R, T) に対応付けられている (図2)<ref name="ref4"><pubmed>21746798</pubmed></ref>。[[Image:Yasuomori fig 3.jpg|thumb|right|250px|<b>図2. α1サブユニットの進化系統樹</b>]]<br>  


==== Ca<sub>v</sub>1 (L型)<br>  ====
==== Ca<sub>v</sub>1 (L型)<br>  ====
23行目: 23行目:
==== Ca<sub>v</sub>3 (T型)<br>  ====
==== Ca<sub>v</sub>3 (T型)<br>  ====


 T型 (Ca<sub>v</sub>3) は低電位 (~−60 mV) で活性化し、早い不活性化や遅い脱活性化 (一過的: <u>T</u>ransient)、小さい (<u>T</u>iny) 単一チャネルコンダクタンスを特徴とする<ref name="ref1" /><ref name="ref6" />。T型は脳に最も豊富に発現する他、心臓のペースメーカー細胞にも発現している。T型は高閾値活性化型のVDCCとは異なり、α<sub>2</sub>δ、β、γサブユニットとの相互作用が確認されていない。<br>  
 T型 (Ca<sub>v</sub>3) は低電位 (~−60 mV) で活性化し、早い不活性化や遅い脱活性化 (一過的: <u>T</u>ransient)、小さい (<u>T</u>iny) 単一チャネルコンダクタンスを特徴とする<ref name="ref1" /><ref name="ref6" />。T型は脳に最も豊富に発現する他、心臓のペースメーカー細胞にも発現している。T型は高閾値活性化型のVDCCとは異なり、α<sub>2</sub>δ、β、γサブユニットとの相互作用が確認されていない。<br>  


=== 副サブユニット (α<sub>2</sub>δ、β、γ)<br>  ===
=== 副サブユニット (α<sub>2</sub>δ、β、γ)<br>  ===
33行目: 33行目:
 異なるαサブユニット (Ca<sub>v</sub>) を含むVDCCは、神経伝達物質放出、シナプス可塑性、細胞の興奮性の調節、筋収縮、遺伝子発現など、異なる生理応答を制御する。<br>  
 異なるαサブユニット (Ca<sub>v</sub>) を含むVDCCは、神経伝達物質放出、シナプス可塑性、細胞の興奮性の調節、筋収縮、遺伝子発現など、異なる生理応答を制御する。<br>  


=== Ca<sub>v</sub>1 (L型) ===
=== Ca<sub>v</sub>1 (L型) ===


[[Image:Yasuomori fig 2.jpg|thumb|right|400px|<b>図2. α1サブユニットの構造</b><br />  
[[Image:Yasuomori fig 2.jpg|thumb|right|400px|<b>図3. α<sub>1</sub>サブユニットの構造</b><br /> 膜貫通領域S1~S6の構造単位が4回繰り返す (リピートI~IV) 。各リピートのS5領域とS6領域の間がCa<sup>2+</sup>を選択的に透過させるチャネル孔を形成し、S4領域が電位センサーとして働く。VDCCのβサブユニットはリピートI-II間のループに結合する。N, P/Q型VDCCのリピートII-III間のループには、アクティブゾーンに存在するタンパク質との相互作用部位 (Synprint)が保存されている。CaMやAKAP、CaNはC末端側の細胞質領域に結合することが報告されている。]]  
膜貫通領域S1~S6の構造単位が4回繰り返す (リピートI~IV) 。各リピートのS5領域とS6領域の間がCa2+を選択的に透過させるチャネル孔を形成し、S4領域が電位センサーとして働く。VDCCのβサブユニットはリピートI-II間のループに結合する。N, P/Q型VDCCのリピートII-III間のループには、アクティブゾーンに存在するタンパク質との相互作用部位 (Synprint)が保存されている。CaMやAKAP、CaNはC末端側の細胞質領域に結合することが報告されている。]]  


 L型は、骨格筋や心筋、平滑筋の収縮に始まり、ホルモンや神経伝達物質の放出、遺伝子発現まで様々な細胞応答に関わる。骨格筋の横行小管 (T管) に発現するCa<sub>v</sub>1.1は、脱分極による構造変化を介してリアノジン受容体を直接活性化し、Ca<sup>2+</sup>放出を誘導することで筋収縮を引き起こす<ref name="ref18"><pubmed>1966760</pubmed></ref>。一方、心筋ではCa<sub>v</sub>1.2からのCa<sup>2+</sup>流入がCa<sup>2+</sup>依存的にリアノジン受容体を活性化し、筋収縮を引き起こす<ref name="ref19"><pubmed>6346892</pubmed></ref>。Ca<sub>v</sub>1.2およびCa<sub>v</sub>1.3は、膵臓のβ細胞におけるインスリン分泌も制御している<ref name="ref20"><pubmed>18511483</pubmed></ref>。また、Ca<sub>v</sub>1.3およびCa<sub>v</sub>1.4は感覚受容細胞のリボンシナプスにおける神経伝達物質放出に関与している<ref name="ref4" />。聴覚有毛細胞ではCa<sub>v</sub>1.3が<ref name="ref21"><pubmed>9405708</pubmed></ref>、網膜の光受容細胞ではCa<sub>v</sub>1.4が神経伝達物質の放出を制御している<ref name="ref22"><pubmed>    9174087</pubmed></ref>。神経細胞においては、L型は細胞体や細胞体近傍の樹状突起に局在しており、近い位置での細胞内Ca<sup>2+</sup>濃度 ([Ca<sup>2+</sup>]<sub>i</sub>) 上昇の引き金となり、下流で核内のシグナル伝達、およびCa<sup>2+</sup>濃度上昇を引き起こす<ref name="ref4" />。L型は、遺伝子発現に重要なシグナル分子であるCaM (calmodulin) 、AKAP (A kinase anchor protein) ファミリー、チロシンリン酸化酵素であるSrc、脱リン酸化酵素であるCaN (calcineurin) などと共役して働き (図2)、CREB (cAMP response element binding protein) <ref name="ref23"><pubmed>8980227</pubmed></ref>やNFAT (Nuclear factor of activated T-cells) といった転写因子の活性を調節することが知られる<ref name="ref4" /> 。  
 L型は、骨格筋や心筋、平滑筋の収縮に始まり、ホルモンや神経伝達物質の放出、遺伝子発現まで様々な細胞応答に関わる。骨格筋の横行小管 (T管) に発現するCa<sub>v</sub>1.1は、脱分極による構造変化を介してリアノジン受容体を直接活性化し、Ca<sup>2+</sup>放出を誘導することで筋収縮を引き起こす<ref name="ref18"><pubmed>1966760</pubmed></ref>。一方、心筋ではCa<sub>v</sub>1.2からのCa<sup>2+</sup>流入がCa<sup>2+</sup>依存的にリアノジン受容体を活性化し、筋収縮を引き起こす<ref name="ref19"><pubmed>6346892</pubmed></ref>。Ca<sub>v</sub>1.2およびCa<sub>v</sub>1.3は、膵臓のβ細胞におけるインスリン分泌も制御している<ref name="ref20"><pubmed>18511483</pubmed></ref>。また、Ca<sub>v</sub>1.3およびCa<sub>v</sub>1.4は感覚受容細胞のリボンシナプスにおける神経伝達物質放出に関与している<ref name="ref4" />。聴覚有毛細胞ではCa<sub>v</sub>1.3が<ref name="ref21"><pubmed>9405708</pubmed></ref>、網膜の光受容細胞ではCa<sub>v</sub>1.4が神経伝達物質の放出を制御している<ref name="ref22"><pubmed>    9174087</pubmed></ref>。神経細胞においては、L型は細胞体や細胞体近傍の樹状突起に局在しており、近い位置での細胞内Ca<sup>2+</sup>濃度 ([Ca<sup>2+</sup>]<sub>i</sub>) 上昇の引き金となり、下流で核内のシグナル伝達、およびCa<sup>2+</sup>濃度上昇を引き起こす<ref name="ref4" />。L型は、遺伝子発現に重要なシグナル分子であるCaM (calmodulin) 、AKAP (A kinase anchor protein) ファミリー、チロシンリン酸化酵素であるSrc、脱リン酸化酵素であるCaN (calcineurin) などと共役して働き (図3)、CREB (cAMP response element binding protein) <ref name="ref23"><pubmed>8980227</pubmed></ref>やNFAT (Nuclear factor of activated T-cells) といった転写因子の活性を調節することが知られる<ref name="ref4" /> 。  


=== Ca<sub>v</sub>2 (N, P/Q, R型)  ===
=== Ca<sub>v</sub>2 (N, P/Q, R型)  ===


 N、P/Q、R型は主に神経系に発現し、神経伝達物質放出を始めとする神経機能を制御する<ref name="ref24"><pubmed>7901765</pubmed></ref><ref name="ref25"><pubmed>7832825</pubmed></ref>。活動電位がシナプス前終末に達すると、N、P/Q、R型などの[[Image:Yasuomori fig 4.jpg|thumb|right|500px|<b>図4. α1サブユニットの分類とその特性</b><br /> α1サブユニットには10種類のアイソフォームが存在し、その電気生理学的特性や薬理学的特性によって分類、命名されている。]]VDCCを介したCa<sup>2+</sup>流入が引き起こされ、神経伝達物質が放出される。シナプス前終末において神経伝達物質放出を効率的に制御するため、シナプス小胞の膜融合を制御するSNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor ) タンパク質 (syntaxin、SNAP-25、VAMP/synaptobrevin)やCa<sup>2+</sup>センサーと考えられているsynaptotagmin、足場タンパク質として働くRIM (Rab-3 interacting molecule) ファミリー、CAST、Munc13、Bassoon、Piccoloといったタンパク質群とVDCCは巨大タンパク質複合体である、アクティブゾーンを形成している。N、P/Q型のα<sub>1</sub>サブユニットのII-IIIリンカーにはアクティブゾーンに存在するタンパク質との相互作用部位 (Synprint&nbsp;; synaptic protein interaction) が保存されており、syntaxinやSNAP-25、CSP (cysteine string protein)、RIM、synaptotagminと相互作用する (図2) <ref name="ref4" /><ref name="ref26"><pubmed>16942804</pubmed></ref>。syntaxinやSNAP-25はsynprint領域を介してVDCCと相互作用し、チャネルの不活性化状態を安定化させることでチャネル活性を抑制することが報告されている<ref name="ref26" />。また、βサブユニットもCASTやRIM、synaptotagminといったアクティブゾーンに存在するタンパク質と相互作用する (図2) <ref name="ref27"><pubmed>22577167</pubmed></ref><ref name="ref28"><pubmed>17496890</pubmed></ref><ref name="ref29"><pubmed>16525042</pubmed></ref>。これらのタンパク質との相互作用は、神経伝達物質放出複合体を形成し、VDCCの機能修飾も担う。RIM1のα型バリアント (RIM1α) はシナプス小胞のRab3と相互作用する足場タンパク質であることから、VDCCとシナプス小胞の距離を規定する分子である可能性が高い<ref name="ref30"><pubmed>    9252191</pubmed></ref>。4種類のRIM (RIM1~4) はどれもVDCCの不活性化を著しく遅らせることでCa<sup>2+</sup>流入量を増加させる<ref name="ref28" />。このように、VDCCはアクティブゾーンのタンパク質と共役して働くことで、高効率的に神経伝達物質放出やシナプス可塑性を制御すると考えられる。<br>  
 N、P/Q、R型は主に神経系に発現し、神経伝達物質放出を始めとする神経機能を制御する<ref name="ref24"><pubmed>7901765</pubmed></ref><ref name="ref25"><pubmed>7832825</pubmed></ref>。活動電位がシナプス前終末に達すると、N、P/Q、R型などの[[Image:Yasuomori fig 4.jpg|thumb|right|500px|<b>図4. α<sub>1</sub>サブユニットの分類とその特性</b><br /> α1サブユニットには10種類のアイソフォームが存在し、その電気生理学的特性や薬理学的特性によって分類、命名されている。]]VDCCを介したCa<sup>2+</sup>流入が引き起こされ、神経伝達物質が放出される。シナプス前終末において神経伝達物質放出を効率的に制御するため、シナプス小胞の膜融合を制御するSNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor ) タンパク質 (syntaxin、SNAP-25、VAMP/synaptobrevin)やCa<sup>2+</sup>センサーと考えられているsynaptotagmin、足場タンパク質として働くRIM (Rab-3 interacting molecule) ファミリー、CAST、Munc13、Bassoon、Piccoloといったタンパク質群とVDCCは巨大タンパク質複合体である、アクティブゾーンを形成している。N、P/Q型のα<sub>1</sub>サブユニットのII-IIIリンカーにはアクティブゾーンに存在するタンパク質との相互作用部位 (Synprint&nbsp;; synaptic protein interaction) が保存されており、syntaxinやSNAP-25、CSP (cysteine string protein)、RIM、synaptotagminと相互作用する (図3) <ref name="ref4" /><ref name="ref26"><pubmed>16942804</pubmed></ref>。syntaxinやSNAP-25はsynprint領域を介してVDCCと相互作用し、チャネルの不活性化状態を安定化させることでチャネル活性を抑制することが報告されている<ref name="ref26" />。また、βサブユニットもCASTやRIM、synaptotagminといったアクティブゾーンに存在するタンパク質と相互作用する (図3) <ref name="ref27"><pubmed>22577167</pubmed></ref><ref name="ref28"><pubmed>17496890</pubmed></ref><ref name="ref29"><pubmed>16525042</pubmed></ref>。これらのタンパク質との相互作用は、神経伝達物質放出複合体を形成し、VDCCの機能修飾も担う。RIM1のα型バリアント (RIM1α) はシナプス小胞のRab3と相互作用する足場タンパク質であることから、VDCCとシナプス小胞の距離を規定する分子である可能性が高い<ref name="ref30"><pubmed>    9252191</pubmed></ref>。4種類のRIM (RIM1~4) はどれもVDCCの不活性化を著しく遅らせることでCa<sup>2+</sup>流入量を増加させる<ref name="ref28" />。このように、VDCCはアクティブゾーンのタンパク質と共役して働くことで、高効率的に神経伝達物質放出やシナプス可塑性を制御すると考えられる。<br>  


=== Ca<sub>v</sub>3 (T型)<br>  ===
=== Ca<sub>v</sub>3 (T型)<br>  ===
56行目: 55行目:
=== TRP チャネル<br>  ===
=== TRP チャネル<br>  ===


 TRP (transient receptor potential) チャネルはショウジョウバエの光受容応答変異株の原因遺伝子として発見されたチャネル分子である<ref name="ref35"><pubmed>    2516726</pubmed></ref>。哺乳類においては28種の遺伝子が同定され、C, M, P, ML, V, Aといった6つのサブファミリーを構成する。TRPチャネルは、温度、機械刺激、痛み、酸-塩基といった種々の物理化学的刺激によって活性化されるカチオンチャネルファミリーを形成している。その多くがCa<sup>2+</sup>透過能を有し、中枢・末梢神経系を始めとするほぼ全ての組織に発現が見られる。TRPCやTRPMファミリーに属するTRPチャネルを介したCa<sup>2+</sup>シグナルは、神経細胞において重要な役割を担っていることが示されている。受容体刺激、細胞内Ca<sup>2+</sup>ストア枯渇、および他のタンパク質との相互作用によって活性化されるTRPCチャネル (TRPC1~7) を介したCa<sup>2+</sup>流入が、神経細胞の分化、増殖、生存や神経突起の伸長・誘導、スパイン形成といった多くの神経機能に関連する<ref name="ref36"><pubmed>    19999578</pubmed></ref>。一方、酸化ストレスや温度、pH、機械刺激などで活性化されるTRPMチャネル (TRPM1~8)を介したCa<sup>2+</sup>流入が、神経細胞の成長・発達や細胞死に関連する<ref name="ref36" />。<br>  
 TRP (transient receptor potential) チャネルはショウジョウバエの光受容応答変異株の原因遺伝子として発見されたチャネル分子である<ref name="ref35"><pubmed>    2516726</pubmed></ref>。哺乳類においては28種の遺伝子が同定され、C, M, P, ML, V, Aといった6つのサブファミリーを構成する。TRPチャネルは、温度、機械刺激、痛み、酸-塩基といった種々の物理化学的刺激によって活性化されるカチオンチャネルファミリーを形成している。その多くがCa<sup>2+</sup>透過能を有し、中枢・末梢神経系を始めとするほぼ全ての組織に発現が見られる。TRPCやTRPMファミリーに属するTRPチャネルを介したCa<sup>2+</sup>シグナルは、神経細胞において重要な役割を担っていることが示されている。受容体刺激、細胞内Ca<sup>2+</sup>ストア枯渇、および他のタンパク質との相互作用によって活性化されるTRPCチャネル (TRPC1~7) を介したCa<sup>2+</sup>流入が、神経細胞の分化、増殖、生存や神経突起の伸長・誘導、スパイン形成といった多くの神経機能に関連する<ref name="ref36"><pubmed>    19999578</pubmed></ref>。一方、酸化ストレスや温度、pH、機械刺激などで活性化されるTRPMチャネル (TRPM1~8)を介したCa<sup>2+</sup>流入が、神経細胞の成長・発達や細胞死に関連する<ref name="ref36" />。<br>  


=== ストア作動性Ca<sup>2+</sup>チャネル <br>  ===
=== ストア作動性Ca<sup>2+</sup>チャネル <br>  ===
39

回編集