「視覚前野」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
93行目: 93行目:
===MT/V5野===
===MT/V5野===


 運動方向に選択性をもつ領域(V5)とミエリン染色で濃く染まる領域(MT野、middle temporal area)として別々に同定されたが、後に同じ領域であるとされた。チトクローム酸化酵素やCat301抗体で濃く染まる。ヒトでは、隣接する領域(MST等)と合わせて、MT complex, hMT, MT+と呼ぶことが多い。背側視覚路に属し、主にV1(4b層)より、他にV2(広線条部),V1(6層),V3背側部,V4,V6から入力を受ける。周辺視の領域は皮質正中部と脳梁膨大後部からも入力を受ける。主に隣接するMST,FST,V4tへ、他に前頭眼野(FEF)、外側頭頂間野(LIP,VIP)、上丘(SC)へ出力を投射する。また、V1を介さない外側膝状体、視床枕からの直接入力がある(盲視を参照)。
 運動方向に選択性をもつ領域(V5)とミエリン染色で濃く染まる領域(MT野、middle temporal area)として別々に同定されたが、後に同じ領域であるとされた<ref><pubmed>4998922</pubmed></ref><ref><pubmed>5002708</pubmed></ref>。チトクローム酸化酵素<ref><pubmed>7719129</pubmed></ref>やCat301抗体<ref><pubmed>1702988</pubmed></ref>で濃く染まる。ヒトでは、隣接する領域(MST等)と合わせて、MT complex, hMT, MT+,V5と呼ぶことが多い<ref><pubmed>7722658</pubmed></ref><ref><pubmed>8490322</pubmed></ref>。背側視覚路に属し、主にV1(4b層)より、他にV2(広線条部),V1(6層),V3背側部,V4,V6から入力を受ける<ref><pubmed>1822724</pubmed></ref><ref><pubmed>3722458</pubmed></ref>。周辺視の領域は皮質正中部と脳梁膨大後部からも入力を受ける<ref><pubmed>17042793</pubmed></ref>。主に隣接するMST,FST,V4tへ、他に前頭眼野(FEF)、外側頭頂間野(LIP,VIP)、上丘(SC)へ出力を投射する。また、V1を介さない外側膝状体、視床枕からの直接入力がある<ref><pubmed>15378066</pubmed></ref>(盲視を参照)。


 大部分(70-85%)のニューロンが刺激の運動方向、速度、両眼視差に選択性を示し、運動方向と両眼視差の機能的コラム(V1を参照)が存在する。注視面からの絶対視差(coarse stereopsis)に選択性を示し、反射性輻輳眼球運動の生成に関与するとされる。奥行きの異なる面を区別し、運動視差(奥行きの違いにより生じる運動速度や運動方向の変化)に選択性を示す。運動方向の違いによる境界線に選択性を示す。注意により強い修飾を受ける。サルのMTは運動視や立体視に直接関わる(第5項を参照)。
 大部分(70-85%)のニューロンが刺激の運動方向、速度、両眼視差に選択性を示し<ref><pubmed>5002708</pubmed></ref><ref><pubmed>6864242</pubmed></ref><ref><pubmed>6481441</pubmed></ref>、運動方向と両眼視差の機能的コラム(V1を参照)が存在する<ref><pubmed>6693933</pubmed></ref><ref><pubmed>6520628</pubmed></ref><ref><pubmed>9952417</pubmed></ref>。注視面からの絶対視差(coarse stereopsis)に選択性を示し、反射性輻輳眼球運動の生成に関与するとされる。奥行きの異なる面を区別し、運動視差(奥行きの違いにより生じる運動速度や運動方向の変化)に選択性を示す。運動方向の違いによる境界線に選択性を示す。注意により強い修飾を受ける。サルのMTは運動視や立体視に直接関わる(第5項を参照)。


 ヒトのV5が損傷されると、運動刺激が引き起こす眼球運動が障害され、運動を知覚できずに世界が静的な"フレーム"の連続に感じられる。MTに経頭蓋磁気刺激を与えると運動知覚が阻害される。一方、後頭頂葉の損傷により3次元的な位置の知覚が阻害される。
 ヒトのV5が損傷されると、運動刺激が引き起こす眼球運動が障害され、運動を知覚できずに世界が静的な"フレーム"の連続に感じられる<ref><pubmed>6850272</pubmed></ref><ref><pubmed>2723744</pubmed></ref><ref><pubmed>1992012</pubmed></ref>。MTに経頭蓋磁気刺激を与えると運動知覚が阻害される<ref><pubmed>9569672</pubmed></ref>。一方、後頭頂葉の損傷により3次元的な位置の知覚が阻害される。


===V6野===
===V6野===


 新世界ザルの背内側野(DM)に相当する。上頭頂小葉(PO)の一部である。主にMTより入力を受け、隣接するV6Aに出力する。頭頂葉(MST,MIP,VIP,LIP)へも投射する。周辺視によく反応する。エンドストップ抑制が弱く、低空間周波数成分に反応する。ドットパターンよりも大きな物体の輪郭線の運動に反応するが、最適な運動方向とその逆方向を区別しない。物体の動きよりも自己運動の検出に関わるとされる。
 新世界ザルの背内側野(DM)に相当する。上頭頂小葉(PO)の一部である<ref><pubmed>8713448</pubmed></ref><ref><pubmed>10583481</pubmed></ref><ref><pubmed>9786211</pubmed></ref>。主にMTより入力を受け、隣接するV6Aに出力する。頭頂葉(MST,MIP,VIP,LIP)へも投射する。周辺視によく反応する。エンドストップ抑制が弱く、低空間周波数成分に反応する。ドットパターンよりも大きな物体の輪郭線の運動に反応するが、最適な運動方向とその逆方向を区別しない。物体の動きよりも自己運動の検出に関わるとされる。ミエリン染色で濃く染まる<ref><pubmed>15678474</pubmed></ref>。
 
 
==視覚情報処理のメカニズム==
==視覚情報処理のメカニズム==


 視覚情報処理について数理モデルによる研究が進んでおり、V1では局所的な輝度コントラストが位置情報をコードすることが示されている(一次視覚野、視差エネルギーモデルを参照)。視覚前野では、視覚刺激の物理特性の代わりに、刺激要素に選択的な反応を用いた数理モデルが提案されている。V2、V5ではV1の出力を基にしたモデルにより、①輪郭線の形状のような刺激要素の組み合わせに対する反応が、個々の刺激要素の空間的な配置や組み合わせ方により説明されること、②テクスチャや自然画像のような面刺激に対する反応が、刺激要素の量の大小で説明できることが示されている。V4、TEでも同様のモデルが刺激要素の組み合わせに対する反応を説明するが、面刺激への反応の説明は十分でないとされる。
 視覚情報処理について数理モデルによる研究が進んでおり、V1では局所的な輝度コントラストが位置情報をコードすることが示されている(一次視覚野、視差エネルギーモデルを参照)。視覚前野では、視覚刺激の物理特性の代わりに、刺激要素に選択的な反応を用いた数理モデルが提案されている。V2<ref><pubmed>21841776</pubmed></ref>、V5ではV1の出力を基にしたモデルにより、①輪郭線の形状のような刺激要素の組み合わせに対する反応が、個々の刺激要素の空間的な配置や組み合わせ方により説明されること、②テクスチャや自然画像のような面刺激に対する反応が、刺激要素の量の大小で説明できることが示されている。V4<ref><pubmed>11698538</pubmed></ref><ref><pubmed>12426571</pubmed></ref><ref><pubmed>17596412</pubmed></ref>、TE<ref><pubmed>15235606</pubmed></ref><ref><pubmed>18836443</pubmed></ref>でも同様のモデルが刺激要素の組み合わせに対する反応を説明するが、面刺激への反応の説明は十分でないとされる。


==関連項目==
==関連項目==
77

回編集