「Hodgkin-Huxley方程式」の版間の差分
Keijiimoto (トーク | 投稿記録) 細編集の要約なし |
Keijiimoto (トーク | 投稿記録) 細編集の要約なし |
||
| 8行目: | 8行目: | ||
#活動電位発生時に、ナトリウムイオン(Na<sup>+</sup>)とカリウムイオン(K<sup>+</sup>)が、細胞膜の別々の通路を通ることを示した。この発見はイオンチャネルの存在を予測するものであり、その後のイオンチャネル研究の源となった。\footnote{当時の論文では、イオンチャネル・チャネルといった用語は用いられておらず、コンダクタンスという用語が使用されている。} | #活動電位発生時に、ナトリウムイオン(Na<sup>+</sup>)とカリウムイオン(K<sup>+</sup>)が、細胞膜の別々の通路を通ることを示した。この発見はイオンチャネルの存在を予測するものであり、その後のイオンチャネル研究の源となった。\footnote{当時の論文では、イオンチャネル・チャネルといった用語は用いられておらず、コンダクタンスという用語が使用されている。} | ||
#Na< | #Na<sup>+</sup>チャネル、K<sup>+</sup>チャネルがが開閉する非線形な動態を微分方程式を含む数式で表した。これらの式はまとめてHodgkin-Huxley方程式と呼ばれている。 | ||
#Na< | #Na<sup>+</sup>チャネル、K<sup>+</sup>チャネルおよびleakチャネルを示す数式を組み合わせ、活動電位の発生・伝播を数値的に再現した。現在行われている興奮性細胞の電位シミュレーションは、要素が増えるなどして複雑になっているが基本は変わらない。 | ||
== <math>\textstyle m^3 h</math>と<math>\textstyle n^4</math> == | == <math>\textstyle m^3 h</math>と<math>\textstyle n^4</math> == | ||
| 19行目: | 19行目: | ||
2つの状態1と2をとる事の出来る系を考え、それぞれの状態にある確率を<math>\textstyle p1</math>と<math>\textstyle p2</math> とする。<math>\textstyle p1</math>と<math>\textstyle p2</math>は時刻<math>\textstyle t</math>の関数であり、<math>\textstyle p1(t)</math>と<math>\textstyle p2(t)</math>と表わされる。<math>\textstyle p1(t)</math>と<math>\textstyle p2(t)</math>は確率であるから、 | 2つの状態1と2をとる事の出来る系を考え、それぞれの状態にある確率を<math>\textstyle p1</math>と<math>\textstyle p2</math> とする。<math>\textstyle p1</math>と<math>\textstyle p2</math>は時刻<math>\textstyle t</math>の関数であり、<math>\textstyle p1(t)</math>と<math>\textstyle p2(t)</math>と表わされる。<math>\textstyle p1(t)</math>と<math>\textstyle p2(t)</math>は確率であるから、 | ||
:<span class="texhtml">''p''1(''t'') + ''p''2(''t'') = 1</span> | ::<span class="texhtml">''p''1(''t'') + ''p''2(''t'') = 1</span> | ||
の関係にある。いま状態1から状態2へ移っていく単位時間での割合(遷移率)を | の関係にある。いま状態1から状態2へ移っていく単位時間での割合(遷移率)をαとし、状態2から状態1への遷移率をβとする。 <math>\textstyle p1(t)</math>と<math>\textstyle p2(t)</math>の時間的経過を表わす微分方程式は、 | ||
:<math> \frac{dp1(t)}{dt} = -\alpha p1(t) + \beta p2(t)</math> | ::<math> \frac{dp1(t)}{dt} = -\alpha p1(t) + \beta p2(t)</math> | ||
:<math> \frac{dp2(t)}{dt} = \alpha p1(t) - \beta p2(t)</math> | ::<math> \frac{dp2(t)}{dt} = \alpha p1(t) - \beta p2(t)</math> | ||
と表される。 | と表される。αとβが定数であるとして、定常状態になれば、 | ||
:<math> \frac{dp1(\infty)}{dt} = -\alpha p1(\infty) + \beta p2(\infty) = 0</math> | ::<math> \frac{dp1(\infty)}{dt} = -\alpha p1(\infty) + \beta p2(\infty) = 0</math> | ||
:<math> \frac{dp2(t)}{dt} = \alpha p1(\infty) - \beta p2(\infty) = 0</math> | ::<math> \frac{dp2(t)}{dt} = \alpha p1(\infty) - \beta p2(\infty) = 0</math> | ||
<math>\textstyle p1(\infty) + p2(\infty) = 1</math> であるから、 | <math>\textstyle p1(\infty) + p2(\infty) = 1</math> であるから、 | ||
2012年2月10日 (金) 00:16時点における版
Hodgkin-Huxley Equations
概略
Alan Lloyd Hodgkin (1914--1998)とAndrew Fielding Huxley (1917- )は、ともにイギリスの電気生理学者である。イカの巨大軸索における活動電位の発生と伝搬を測定し、その解析から現在の電気生理学の基礎となる概念を生み出し、また興奮性細胞(神経細胞、心筋、骨格筋)の電気活動を定量的に扱う道を開いた。HodgkinとHuxleyは、電気生理学の基礎を築いた功績により、同じく電気生理学者のJohn Carew Ecclesとともに、1963年のノーベル医学・生理学賞を受賞している。
HodgkinとHuxleyの業績の意義は次のように要約できる。
- 活動電位発生時に、ナトリウムイオン(Na+)とカリウムイオン(K+)が、細胞膜の別々の通路を通ることを示した。この発見はイオンチャネルの存在を予測するものであり、その後のイオンチャネル研究の源となった。\footnote{当時の論文では、イオンチャネル・チャネルといった用語は用いられておらず、コンダクタンスという用語が使用されている。}
- Na+チャネル、K+チャネルがが開閉する非線形な動態を微分方程式を含む数式で表した。これらの式はまとめてHodgkin-Huxley方程式と呼ばれている。
- Na+チャネル、K+チャネルおよびleakチャネルを示す数式を組み合わせ、活動電位の発生・伝播を数値的に再現した。現在行われている興奮性細胞の電位シミュレーションは、要素が増えるなどして複雑になっているが基本は変わらない。
構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \textstyle m^3 h} と構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \textstyle n^4}
電位変化
Two-state model: 基礎的な考え方*
2つの状態1と2をとる事の出来る系を考え、それぞれの状態にある確率を構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \textstyle p1} と構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \textstyle p2} とする。構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \textstyle p1} と構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \textstyle p2} は時刻構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \textstyle t} の関数であり、とと表わされる。とは確率であるから、
- p1(t) + p2(t) = 1
の関係にある。いま状態1から状態2へ移っていく単位時間での割合(遷移率)をαとし、状態2から状態1への遷移率をβとする。 との時間的経過を表わす微分方程式は、
- 構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \frac{dp1(t)}{dt} = -\alpha p1(t) + \beta p2(t)}
と表される。αとβが定数であるとして、定常状態になれば、
- 構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \frac{dp2(t)}{dt} = \alpha p1(\infty) - \beta p2(\infty) = 0}
構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \textstyle p1(\infty) + p2(\infty) = 1} であるから、
- 構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle p1(\infty) = \frac{\beta}{\alpha+\beta}}
- 構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle p2(\infty) = \frac{\alpha}{\alpha+\beta}}
となる。また微分方程式を解析的に解くと、
- 構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle p1(t) = \left(p1(0)-\frac{\beta}{\alpha+\beta}\right) e^{-(\alpha+\beta)t} + \frac{\beta}{\alpha+\beta} }
- 構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle p2(t) = \left(p2(0)-\frac{\alpha}{\alpha+\beta}\right) e^{-(\alpha+\beta)t} + \frac{\alpha}{\alpha+\beta} }
となる。これらの式は、構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \textstyle p1(t)}
と構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \textstyle p2(t)}
はそれぞれ指数関数的に構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \textstyle p1(\infty)}
と構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \textstyle p2(\infty)}
に近づいていき、その時定数構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \textstyle \tau}
は構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \textstyle 1/(\alpha+\beta)}
であること、およびこれらの値構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \textstyle p1(\infty)}
、構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \textstyle p2(\infty)}
、構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \textstyle \tau}
は、初期値構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \textstyle p1(0)}
、構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \textstyle p2(0)}
には依存しないことを示している。さらに、
- 構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle q1(t) = p1(t) - \frac{\beta}{\alpha+\beta} }
- 構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle q2(t) = p2(t) - \frac{\alpha}{\alpha+\beta} }
とすると、
- q1(t) = q1(0)e − (α + β)t
- q2(t) = q2(0)e − (α + β)t
とより単純な形式となる。この関係は微分方程式の数値計算でよく用いられる。
電位固定法: 基礎となった技術*
Hodgkin-Huxley以前に、電気生理学の実験が行われていなかったわけではない。電流と電位変化に関する研究は、かなり多く行われていた。しかしながら、細胞にはいろいろなイオンチャネルを通して電流が流れるため、細胞の電位構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \textstyle v} と外部から流す電流構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \textstyle I_{ext}} の間の関係は、
- 構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \frac{dv}{dt} = -\frac{1}{C}\left(\sum_X G_{X}(v-E_X) - I_{ext}\right)}
となり、実験データの解釈は単純ではない。電位をコントロールして行う実験方法であるvoltage clamp(電位固定法)は、1940年代にアメリカの生物物理学者Kenneth Cole (1900 - 1984)らにより開発された。HodgkinとHuxleyはこのvoltage-clampを巧みに利用して大きな成果を得る事が出来たと言える。上記の式で構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \textstyle v} が一定となるように外部電流を構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \textstyle I_{clamp}} を流すと、左辺は構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \textstyle 0} となるため、
| Ic'l'a'm'p = | ∑ | GX(v − EX) |
| X |
という関係が得られる。もし溶液の組成を工夫しチャネルのブロッカーなどを用いて、イオンチャネル構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \textstyle A} を流れる電流が測れたとすると、
- Ic'l'a'm'p = GA(v − EA)
となる。ここで構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \textstyle I_{clamp}} は実験の測定値、構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \textstyle v} は実験の設定値、構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \textstyle E_A} は実験条件で定まる定数なので、イオンチャネル構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \textstyle A} のコンダクタンス構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \textstyle G_A} を、
- 構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle G_{A} = \frac{I_{clamp}}{v-E_A}}
と算出できることになる。
HHモデルに対する批判
Single-channel recording
Markovモデル
Fractalモデルとの論争