「ショウジョウバエ」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
3行目: 3行目:
''東京大学大学院新領域創成科学研究科''<br>
''東京大学大学院新領域創成科学研究科''<br>
DOI:<selfdoi /> 原稿受付日:2016年3月2日 原稿完成日:2016年月日<br>
DOI:<selfdoi /> 原稿受付日:2016年3月2日 原稿完成日:2016年月日<br>
担当編集委員:[http://researchmap.jp/okanolab 岡野 栄之](慶應義塾大学 医学部)<br>          
担当編集委員:[http://researchmap.jp/tsuyoshimiyakawa 宮川 剛](藤田保健衛生大学)<br>          
</div>
</div>


33行目: 33行目:


== モデル生物としての特徴 ==
== モデル生物としての特徴 ==
 [[昆虫]]網、双翅目に属するショウジョウバエ科には2000種以上の種が存在するが、このうち一般にショウジョウバエと呼ばれるものはキイロショウジョウバエである。
 [[wikipedia:ja:昆虫網|昆虫網]]、[[wikipedia:ja:双翅目|双翅目]]に属する[[wikipedia:ja:ショウジョウバエ科|ショウジョウバエ科]]には2000種以上の種が存在するが、このうち一般にショウジョウバエと呼ばれるものはキイロショウジョウバエである。


 完全変態昆虫で、摂氏25度では、胚期(1日)、1齢幼虫期(1日)、2齢幼虫期(1日)、3齢幼虫期(2日)、蛹期(5日)を経て約10日で成虫になる。体長が小さく(成虫で3mm)、飼育が容易で、世代期間が短いことから、遺伝学的解析に適している。また、遺伝的組換えを抑制するバランサー[[染色体]]を用いて突然変異体を安定に継代維持することができるのも大きな利点である。神経細胞の数は幼虫で約1万、成虫で10万程度。
 [[wikipedia:ja:完全変態|完全変態]]昆虫で、摂氏25度では、胚期(1日)、1齢幼虫期(1日)、2齢幼虫期(1日)、3齢幼虫期(2日)、蛹期(5日)を経て約10日で成虫になる。体長が小さく(成虫で3mm)、飼育が容易で、世代期間が短いことから、遺伝学的解析に適している。また、遺伝的組換えを抑制する[[wikipedia:ja:バランサー染色体|バランサー染色体]]を用いて突然変異体を安定に継代維持することができるのも大きな利点である。神経細胞の数は幼虫で約1万、成虫で10万程度。


== よく用いられる遺伝学的手法 ==
== よく用いられる遺伝学的手法 ==
41行目: 41行目:


=== 機能欠失型変異 ===
=== 機能欠失型変異 ===
 古典的には、突然変異体の解析により遺伝子機能の解析が行われた。Nusslein-VolhardとWieschausが行った胚発生に関わる遺伝子の系統的解析に代表されるように、X線や化学物質を用いて人工的に変異を誘導し、大量の変異体のなかから着目する表現型を示すものを探す順遺伝学的手法(forward genetics)は[[動物]]発生や行動の解析において大きな威力を発揮した(section3に具体例を紹介)。1976年には[[トランスポゾン]]P因子が発見され、個体への遺伝子導入が可能になるとともに、突然変異の原因遺伝子のクローニングが一挙に進んだ。さらに2000年頃に完了したゲノム解読後、P因子挿入部位のマッピングが進み、現在では60%以上の遺伝子についてデータベースを[[検索]]するだけでP因子挿入の変異体を得ることができる。さらに再転移法を用いて近傍のP因子から欠失変異体を得ることができるので、P因子を頼りに大多数の遺伝子の機能欠失体を得ることが可能となっている。さらに、[[RNAi]]による遺伝子機能knock-downを可能にする系統(UAS-RNAi)もほとんどすべての遺伝子について利用可能である。RNAiの場合、遺伝子機能を完全には阻害することができないという問題がある一方で、下記のGal4-UASシステムと組み合わせることで、特定の細胞においてのみ遺伝子機能を阻害できるという利点がある。一方、[[マウス]]で用いられるhomologous-recombinationのように特定の遺伝子を狙って欠失変異体を作成する手法は長年存在せず、遺伝学モデルとしての弱点のひとつであったが、組換え酵素FLPを利用して相同組換えを誘導する系が最近開発された。さらにごく最近ではゲノム編集を用いることで、より効率的に変異体を作成することが可能となっている。
 古典的には、[[突然変異体]]の解析により遺伝子機能の解析が行われた。[[wikipedia:ja:クリスティアーネ・ニュスライン=フォルハルト|Nusslein-Volhard]]と[[wikipedia:ja:エリック・ヴィーシャウス|Wieschaus]]が行った胚発生に関わる遺伝子の系統的解析に代表されるように、X線や化学物質を用いて人工的に変異を誘導し、大量の変異体のなかから着目する表現型を示すものを探す[[順遺伝学的手法]](forward genetics)は[[動物]]発生や行動の解析において大きな威力を発揮した(section3に具体例を紹介)。
 
 1976年には[[トランスポゾン]][[P因子]]が発見され、個体への遺伝子導入が可能になるとともに、突然変異の原因遺伝子のクローニングが一挙に進んだ。さらに2000年頃に完了した[[wikipedia:ja:ゲノム|ゲノム]]解読後、P因子挿入部位のマッピングが進み、現在では60%以上の遺伝子についてデータベースを[[検索]]するだけでP因子挿入の変異体を得ることができる。さらに再転移法を用いて近傍のP因子から欠失変異体を得ることができるので、P因子を頼りに大多数の遺伝子の機能欠失体を得ることが可能となっている。
 
 さらに、[[RNAi]]による遺伝子機能knock-downを可能にする系統(UAS-RNAi)もほとんどすべての遺伝子について利用可能である。RNAiの場合、遺伝子機能を完全には阻害することができないという問題がある一方で、下記の[[Gal4-UASシステム]]と組み合わせることで、特定の細胞においてのみ遺伝子機能を阻害できるという利点がある。一方、[[マウス]]で用いられる[[homologous-recombination]]のように特定の遺伝子を狙って欠失変異体を作成する手法は長年存在せず、遺伝学モデルとしての弱点のひとつであったが、組換え酵素[[FLP]]を利用して相同組換えを誘導する系が最近開発された。さらにごく最近では[[ゲノム編集]]を用いることで、より効率的に変異体を作成することが可能となっている。


=== 機能獲得型変異 ===
=== 機能獲得型変異 ===
 当初は発現制御領域([[エンハンサー]][[プロモーター]])の下流に解析したい遺伝子をつないだコンストラクトを、P因子転換法を用いて個体に導入することで強制発現を誘導していたが、現在ではGal4-UASシステムを用いるのが一般的である。Gal4は酵母由来の[[転写因子]]で、UAS配列に結合し下流の遺伝子の発現を活性化させる。このシステムの最大の特徴は、「発現場所」を決めるGal4系統と、「何を発現するか」を決めるUAS系統を独立に作成し、これらを交配した子孫において表現型を解析することにある。これにより致死性の変異の解析を可能にするとともに、多様な組み合わせでの強制発現が効率良く行えるようになった。発現制御領域に結合したコンストラクトやエンハンサー・トラップ法を用いることで、様々な組織や細胞で特異的にGal4を発現する系統が多数作成されており、ストックセンター等から入手可能である。同様に多くの遺伝子の上流にUASをもつ系統が作成されストックセンターから入手可能である。また緑色蛍光タンパク質[[GFP]]、[[カルシウム]]インジケーターGCaMP、光感受性チャネルChannelrhodopsin2など様々な分子ツールを発現するためのUAS系統についても共通の財産として研究者間で共有されている。また、LexAシステムなど他の発現系を併用することで、複数の遺伝子やレポーターを独立に別の細胞群において発現させることも可能である。
 当初は発現制御領域(エンハンサーやプロモーター)の下流に解析したい遺伝子をつないだコンストラクトを、[[P因子転換法]]を用いて個体に導入することで[[強制発現]]を誘導していたが、現在ではGal4-UASシステムを用いるのが一般的である。[[Gal4]]は[[wikipedia:ja:酵母|酵母]]由来の[[転写因子]]で、[[UAS配列]]に結合し下流の遺伝子の発現を活性化させる。このシステムの最大の特徴は、「発現場所」を決めるGal4系統と、「何を発現するか」を決めるUAS系統を独立に作成し、これらを交配した子孫において表現型を解析することにある。これにより致死性の変異の解析を可能にするとともに、多様な組み合わせでの強制発現が効率良く行えるようになった。発現制御領域に結合したコンストラクトや[[エンハンサー・トラップ法]]を用いることで、様々な組織や細胞で特異的にGal4を発現する系統が多数作成されており、ストックセンター等から入手可能である。
 
 同様に多くの遺伝子の上流にUASをもつ系統が作成されストックセンターから入手可能である。また[[緑色蛍光タンパク質]][[GFP]]、[[カルシウムインジケーター]][[GCaMP]]、[[光感受性チャネル]][[Channelrhodopsin2]]など様々な分子ツールを発現するためのUAS系統についても共通の財産として研究者間で共有されている。また、[[LexAシステム]]など他の発現系を併用することで、複数の遺伝子やレポーターを独立に別の細胞群において発現させることも可能である。


=== クローン解析(モザイク解析) ===
=== クローン解析(モザイク解析) ===
 一部の細胞もしくは[[細胞系譜]]のみに変異をもたらすことにより、致死性の変異の表現型を調べたり、特異的な遺伝子機能を解析したりすることができる。例えば、個体全体を変異体にした場合に脳が形成されないような場合でも、特定の神経細胞のみに変異をもたらすことで遺伝子の細胞自律的な機能を調べることができる。個体内で細胞ごとに遺伝型が異なりモザイク的になるので、モザイク解析とも呼ばれる。クローン解析の歴史は古く発生学の研究に大きな貢献をした。以前はX線などを用いたが、現在では組換え酵素FLPとその標的配列(FRT)を利用して体細胞組換えを誘発することでクローンを作成するのが一般的である。さらにMARCM法と呼ばれる手法は、変異体クローンのみにおいてGFP等のマーカーを発現させることにより、その細胞形態を可視化することを可能にする。クローン解析は、変異体の解析のみならず、神経細胞の形態(特に[[軸索]]や樹状突起の配線パターン)を解析するのにも有効である。最近では、Brainbow法と組み合わせることで、多数のクローンを異なった色で可視化する手法も開発されている。
 一部の細胞もしくは[[細胞系譜]]のみに変異をもたらすことにより、致死性の変異の表現型を調べたり、特異的な遺伝子機能を解析したりすることができる。例えば、個体全体を変異体にした場合に脳が形成されないような場合でも、特定の神経細胞のみに変異をもたらすことで遺伝子の細胞自律的な機能を調べることができる。個体内で細胞ごとに遺伝型が異なりモザイク的になるので、モザイク解析とも呼ばれる。クローン解析の歴史は古く発生学の研究に大きな貢献をした。
 
 以前はX線などを用いたが、現在では組換え酵素FLPとその標的配列([[FRT]])を利用して体細胞組換えを誘発することでクローンを作成するのが一般的である。さらに[[MARCM法]]と呼ばれる手法は、変異体クローンのみにおいてGFP等のマーカーを発現させることにより、その細胞形態を可視化することを可能にする。クローン解析は、変異体の解析のみならず、神経細胞の形態(特に[[軸索]]や樹状突起の配線パターン)を解析するのにも有効である。最近では、[[Brainbow法]]と組み合わせることで、多数のクローンを異なった色で可視化する手法も開発されている。


== 神経科学における代表的研究 ==
== 神経科学における代表的研究 ==
=== 神経発生学 ===
=== 神経発生学 ===
 胸体節が重複するbithorax変異に代表されるホメオティック変異体の解析は、[[ホメオボックス]]転写因子群による体(および[[脳神経]]系)の[[前後軸]]決定機構の解明につながった。また胚発生における変異の網羅的解析は、[[WNT|Wnt]] (Wingless), TGF-β (Dpp), hedgehogなどの同定につながった(以上の功績によりE.D. Lewis, C. Nusslein-VolhardとE. Wieschausが1995年ノーベル賞受賞)。この他、Notch-Delta系、achaete-scute complexに代表される[[bHLH]]転写因子群等神経発生に関わる多くの重要遺伝子がショウジョウバエにおいて発見された。後に、これら遺伝子のホモログの同定・解析が[[脊椎動物]]の神経発生の研究にも革新をもたらした。
 胸[[体節]]が重複する[[bithorax変異]]に代表されるホメオティック変異体の解析は、[[ホメオボックス転写因子]]群による体(および[[脳神経]]系)の[[前後軸]]決定機構の解明につながった。また胚発生における変異の網羅的解析は、[[WNT|Wnt]]([[Wingless]])、[[TGF-β]]([[Dpp]])、[[hedgehog]]などの同定につながった(以上の功績により[[wikipedia:ja:エドワード・ルイス|E.B. Lewis]]、C. Nusslein-VolhardとE. Wieschausが1995年[[wikipedia:ja:ノーベル賞|ノーベル賞]]受賞)。この他、[[Notch]]-[[Delta]]系、[[achaete-scute complex]]に代表される[[bHLH転写因子]]群等神経発生に関わる多くの重要遺伝子がショウジョウバエにおいて発見された。後に、これら遺伝子のホモログの同定・解析が[[脊椎動物]]の神経発生の研究にも革新をもたらした。


=== 神経行動学 ===
=== 神経行動学 ===
 S. Benzerが開拓した行動遺伝学は多数の変異体のなかから特定の行動に異常をもたらすものを単離することで、遺伝子の機能と動物行動との因果を明らかにした。有名な例として、概日周期の制御に関わるperiod遺伝子、記憶・学習に関わるdunce遺伝子があげられる。また、fruitlessなど求愛行動に関わる変異の研究は脳の性差の理解につながった。
 S. Benzerが開拓した行動遺伝学は多数の変異体のなかから特定の行動に異常をもたらすものを単離することで、遺伝子の機能と動物行動との因果を明らかにした。有名な例として、[[概日周期]]の制御に関わる[[period]]遺伝子、[[記憶]]・[[学習]]に関わる[[dunce]]遺伝子があげられる。また、[[fruitless]]など[[求愛行動]]に関わる変異の研究は脳の性差の理解につながった。


=== 機能生理学 ===
=== 機能生理学 ===
 Benzerらの行動スクリーニングはまた[[イオンチャネル]]などの生理機能分子の同定にもつながった。例えば、Shaker変異は最初の[[カリウムチャネル]]のクローニングにつながった。同様にTRPチャネルもショウジョウバエでの研究から発見されたものである。
 Benzerらの行動スクリーニングはまた[[イオンチャネル]]などの生理機能分子の同定にもつながった。例えば、[[Shaker]]変異は最初の[[カリウムチャネル]]のクローニングにつながった。同様に[[TRPチャネル]]もショウジョウバエでの研究から発見されたものである。


== 最近の研究動向 ==
== 最近の研究動向 ==
 米国のJanelia研究所を中心に単一の神経細胞種において特異的に発現を誘導するGal4系統が拡充されており、大量のGal4系統を用いた解剖学的脳マッピングが進行している。またオプトジェネティクスを用い、特定の神経細胞の活動を促進もしくは阻害したときの動物行動や回路の挙動への影響を調べる研究も盛んに行われている。成虫の脳部位や幼虫の全中枢神経系において、コネクトミクス解析(連続[[切片]]電子顕微鏡画像三次元再構築)による回路構造決定のプロジェクトも進行している。カルシウムイメージングや[[パッチクランプ法]]を用いて神経活動を測定する研究も急増している。以上のような革新的技術を組み合わせて、感覚情報処理、記憶学習や行動制御の仕組みを回路レベルで理解しようとするシステム神経科学が急ピッチで展開している。また、[[アルツハイマー病]]やパーキンソン病などの[[モデル動物]]が作成されるなど、[[精神神経疾患]]のハイスループットモデル系としても活用されている。
 米国の[[wikipedia:Janelia Research Campus|Janelia研究所]]を中心に単一の神経細胞種において特異的に発現を誘導するGal4系統が拡充されており、大量のGal4系統を用いた解剖学的脳マッピングが進行している。また[[オプトジェネティクス]]を用い、特定の神経細胞の活動を促進もしくは阻害したときの動物行動や回路の挙動への影響を調べる研究も盛んに行われている。成虫の脳部位や幼虫の全中枢神経系において、[[コネクトミクス]]解析(連続[[切片]]電子顕微鏡画像三次元再構築)による回路構造決定のプロジェクトも進行している。[[カルシウムイメージング]]や[[パッチクランプ法]]を用いて神経活動を測定する研究も急増している。
 
 以上のような革新的技術を組み合わせて、感覚情報処理、記憶学習や行動制御の仕組みを回路レベルで理解しようとするシステム神経科学が急ピッチで展開している。また、[[アルツハイマー病]]や[[パーキンソン病]]などの[[モデル動物]]が作成されるなど、[[精神神経疾患]]のハイスループットモデル系としても活用されている。


== 外部リンク ==
== 外部リンク ==
[http://flybase.org Flybase]
*[http://flybase.org Flybase]
遺伝子データベース。アノテーション、系統ストック、発現パターン、参考文献等、各遺伝子に関するすべての情報が集約されたデータベース。アトラスや脳マッピング、ストックセンター、啓蒙等の外部サイトへのリンクもあるので、ここを出発点にショウジョウバエに関するすべての情報にアクセスできる。
 遺伝子データベース。アノテーション、系統ストック、発現パターン、参考文献等、各遺伝子に関するすべての情報が集約されたデータベース。<br>
 アトラスや脳マッピング、ストックセンター、啓蒙等の外部サイトへのリンクもあるので、ここを出発点にショウジョウバエに関するすべての情報にアクセスできる。


[http://www.sdbonline.org/sites/fly/aimain/1aahome.htm The Interactive Fly]
*[http://www.sdbonline.org/sites/fly/aimain/1aahome.htm The Interactive Fly]
啓蒙・解説サイト。重要遺伝子の機能、発生や解剖アトラスについての分かりやすい解説がある。
 啓蒙・解説サイト。重要遺伝子の機能、発生や解剖アトラスについての分かりやすい解説がある。


[https://www.janelia.org/project-team/flylight FlyLight]
*[https://www.janelia.org/project-team/flylight FlyLight]
Janelia研究所で作成されたGal4系統のコレクションを用いた神経細胞のマッピング、解剖アトラス。
 Janelia研究所で作成されたGal4系統のコレクションを用いた神経細胞のマッピング、解剖アトラス。


== 参考文献 ==
== 参考文献 ==
<REFERENCES />
<REFERENCES />


1.神経科学研究において用いられる遺伝学的手法について
  2.神経科学研究において用いられる遺伝学的手法について<br>
Neuron. 2011 Oct 20;72(2):202-30. doi: 10.1016/j.neuron.2011.09.021.
   Neuron. 2011 Oct 20;72(2):202-30. doi: 10.1016/j.neuron.2011.09.021.<br>
Genetic manipulation of genes and cells in the nervous system of the fruit fly.
   Genetic manipulation of genes and cells in the nervous system of the fruit fly.<br>
Venken KJ1, Simpson JH, Bellen HJ.
   Venken KJ1, Simpson JH, Bellen HJ.


2.神経科学における代表的研究について
  3.神経科学における代表的研究について<br>
Nat Rev Neurosci. 2010 Jul;11(7):514-22. doi: 10.1038/nrn2839. Review.
   Nat Rev Neurosci. 2010 Jul;11(7):514-22. doi: 10.1038/nrn2839. Review.<br>
100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future.
   100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future.<br>
Bellen HJ, Tong C, Tsuda H.
   Bellen HJ, Tong C, Tsuda H.


3. オプトジェネティクスなどの新技術を用いた行動解析について
  4. オプトジェネティクスなどの新技術を用いた行動解析について<br>
Curr Opin Neurobiol. 2012 Aug;22(4):609-14. doi: 10.1016/j.conb.2012.01.002. Epub 2012 Jan 27.
   Curr Opin Neurobiol. 2012 Aug;22(4):609-14. doi: 10.1016/j.conb.2012.01.002. Epub 2012 Jan 27.<br>
Identifying behavioral circuits in Drosophila melanogaster: moving targets in a flying insect.
   Identifying behavioral circuits in Drosophila melanogaster: moving targets in a flying insect.<br>
Griffith LC1.
   Griffith LC1.