「神経符号化」の版間の差分

68行目: 68行目:


===神経細胞の活動による刺激の弁別課題===
===神経細胞の活動による刺激の弁別課題===
 集団符号化に対する重要な知見は少数の神経細胞の活動記録から得られている。サルMT野にあり、物体が特定の方向に動く時に反応する神経細胞を用いた実験結果が有名である<ref name=Britten1992><pubmed>1464765</pubmed></ref>[Britten 1992]。ランダムドットモーション視覚刺激をサルに提示し、ランダムに動くドットの何パーセントかが共通して特定の方向もしくはその反対方向を動くようにする。この向きは後で示すように同時に記録している運動方向選択性を有する神経細胞の選好方向もしくはその反対方向を使用する。このような条件で、Brittenらはどちら向きにドットの流れがあるかをサルに報告させ、共通して動くドットの割合を0%から100%まで変更したときの正答率を測定することで心理測定関数を得た。
 集団符号化に対する重要な知見は少数の神経細胞の活動記録から得られている。[[サル]][[MT野]]にあり、物体が特定の方向に動く時に反応する神経細胞を用いた実験結果が有名である<ref name=Britten1992><pubmed>1464765</pubmed></ref>[Britten 1992]。[[ランダムドットモーション]][[視覚]]刺激をサルに提示し、ランダムに動くドットの何パーセントかが共通して特定の方向もしくはその反対方向を動くようにする。この向きは後で示すように同時に記録している運動方向選択性を有する神経細胞の選好方向もしくはその反対方向を使用する。このような条件で、Brittenらはどちら向きにドットの流れがあるかをサルに報告させ、共通して動くドットの割合を0%から100%まで変更したときの正答率を測定することで心理測定関数を得た。


 ここでも神経符号化研究の方法論に従い、行動の成績と神経活動に基づく弁別課題の成績を比較する。すなわち、この課題を遂行中のサルのMT野から神経細胞活動を記録し、神経細胞の発火頻度から刺激(運動方向)の弁別を行う。驚くべきことに、このようにして得られた少数の神経細胞の活動に基づく弁別課題の成績は、行動成績に匹敵する。すなわち、この課題における動物の最終的な意思決定と行動は、MT野の多数の神経細胞の活動をもとにしていると考えられるのにもかかわらず、ごく僅かなMT野の神経細胞の活動によって説明されてしまう。電気生理実験による細胞外記録で記録される神経細胞は相当程度ランダムに選択されていることを考えれば、この事実はどのMT野神経細胞をとってきても行動を説明できること、すなわち行動に必要な情報はどのMT野神経細胞にも存在し、同じ情報が多数の神経細胞にシェアされていることを意味している。このような情報符号化方式を冗長符号化(redundant coding)という。
 ここでも神経符号化研究の方法論に従い、行動の成績と神経活動に基づく弁別課題の成績を比較する。すなわち、この課題を遂行中のサルのMT野から神経細胞活動を記録し、神経細胞の発火頻度から刺激(運動方向)の弁別を行う。驚くべきことに、このようにして得られた少数の神経細胞の活動に基づく弁別課題の成績は、行動成績に匹敵する。すなわち、この課題における動物の最終的な意思決定と行動は、MT野の多数の神経細胞の活動をもとにしていると考えられるのにもかかわらず、ごく僅かなMT野の神経細胞の活動によって説明されてしまう。電気生理実験による[[細胞外記録]]で記録される神経細胞は相当程度ランダムに選択されていることを考えれば、この事実はどのMT野神経細胞をとってきても行動を説明できること、すなわち行動に必要な情報はどのMT野神経細胞にも存在し、同じ情報が多数の神経細胞にシェアされていることを意味している。このような情報符号化方式を[[冗長符号化]](redundant coding)という。


===チューニング関数と相関構造===
===チューニング関数と相関構造===
 冗長符号化が実現されているという仮定のもとで次に問題となるのは、どのような神経活動によって、冗長性が実現されているのかという問題である。ZoharyらはMT野神経細胞が0.2程度の正の相関係数を示すことから、これが冗長性を生むと考えた<ref name=Zohary1994><pubmed>8022482</pubmed></ref>。例えば独立な神経細胞が2つあり、2つの発火頻度の平均値を刺激の推定量として使う場合、推定値の変動(分散)は1つの場合の半分になる。独立な神経細胞の5つの発火頻度の平均値で推定する場合は変動が5分の1になる。神経細胞の数を増やしていけば、推定値の変動を0に近くなるまでどこまでも小さくしていける。すなわち、神経細胞の数が多いほど推定精度は高くなる。ところが神経細胞の活動が正の相関を持つときには、推定精度に限界が生じる。MT野神経細胞集団のように相関係数が0.2である場合には、どんなに神経細胞の数を大きくしても、推定値の分散は1つの神経細胞の推定揺らぎの5分の1までしか小さくできない。刺激弁別の精度が神経細胞数の増加とともに一定の値に収束し、独立の場合よりずっと小さくなるのは冗長な符号化の一例となっている。
 冗長符号化が実現されているという仮定のもとで次に問題となるのは、どのような神経活動によって、冗長性が実現されているのかという問題である。ZoharyらはMT野神経細胞が0.2程度の正の[[wj:相関係数|相関係数]]を示すことから、これが冗長性を生むと考えた<ref name=Zohary1994><pubmed>8022482</pubmed></ref>。例えば独立な神経細胞が2つあり、2つの発火頻度の平均値を刺激の推定量として使う場合、推定値の変動(分散)は1つの場合の半分になる。独立な神経細胞の5つの発火頻度の平均値で推定する場合は変動が5分の1になる。神経細胞の数を増やしていけば、推定値の変動を0に近くなるまでどこまでも小さくしていける。すなわち、神経細胞の数が多いほど推定精度は高くなる。ところが神経細胞の活動が正の相関を持つときには、推定精度に限界が生じる。MT野神経細胞集団のように相関係数が0.2である場合には、どんなに神経細胞の数を大きくしても、推定値の分散は1つの神経細胞の推定揺らぎの5分の1までしか小さくできない。刺激弁別の精度が神経細胞数の増加とともに一定の値に収束し、独立の場合よりずっと小さくなるのは冗長な符号化の一例となっている。


 しかし、この考え方には大きな欠点がある。複数の神経細胞の活動の平均値を刺激の推定量とすることに意味があるのは、それら複数の神経細胞が刺激に対して全く同じように応答している場合のみである。すなわち、刺激と神経細胞の平均発火頻度との関係を表すチューニング関数(応答関数・活性化関数)が同じ神経細胞集団に対してのみ、発火頻度の平均値を推定量とすることに意味がある。しかし、一般には刺激の推定精度を議論するのに平均発火率の揺らぎを使用する妥当性はない。次に示すように、集団活動による刺激の推定精度は神経細胞間の相関だけで決められるわけではなく、個々の神経細胞のチューニング関数と相関構造の関係が重要な役割を担うことが明らかになっている<ref name=Averbeck2006><pubmed>16760916</pubmed></ref>[Averbeck 2006]。
 しかし、この考え方には大きな欠点がある。複数の神経細胞の活動の平均値を刺激の推定量とすることに意味があるのは、それら複数の神経細胞が刺激に対して全く同じように応答している場合のみである。すなわち、刺激と神経細胞の平均発火頻度との関係を表すチューニング関数(応答関数・活性化関数)が同じ神経細胞集団に対してのみ、発火頻度の平均値を推定量とすることに意味がある。しかし、一般には刺激の推定精度を議論するのに平均発火率の揺らぎを使用する妥当性はない。次に示すように、集団活動による刺激の推定精度は神経細胞間の相関だけで決められるわけではなく、個々の神経細胞のチューニング関数と相関構造の関係が重要な役割を担うことが明らかになっている<ref name=Averbeck2006><pubmed>16760916</pubmed></ref>[Averbeck 2006]。
79行目: 79行目:
[[ファイル:Shimazaki Neural Coding Fig2.png|サムネイル|'''図2. 2つの神経細胞の場合のシグナル相関とノイズ相関の関係'''<br>'''(A)''' チューニング関数が正のシグナル相関を持つ場合、正の2次相関により刺激の弁別が難しくなる。<br>'''(B)''' チューニング関数が負のシグナル相関を持つ場合、正の2次相関は刺激の弁別に影響しない。]]
[[ファイル:Shimazaki Neural Coding Fig2.png|サムネイル|'''図2. 2つの神経細胞の場合のシグナル相関とノイズ相関の関係'''<br>'''(A)''' チューニング関数が正のシグナル相関を持つ場合、正の2次相関により刺激の弁別が難しくなる。<br>'''(B)''' チューニング関数が負のシグナル相関を持つ場合、正の2次相関は刺激の弁別に影響しない。]]


 '''図2A、B'''の左のパネルは2つの神経細胞が類似したチューニング関数を持つ場合と性質の大きく異なるチューニング関数を持つ場合を示している。一方では、刺激が強くなると2つの神経細胞の発火頻度がともに大きくなる。他方では、2つのうち1つの神経細胞は刺激が強くなると発火頻度が小さくなる性質を持つ。2つの神経細胞の応答を各神経細胞の発火頻度を軸とする2次元の平面に描いたものが'''図2A、B'''の右パネルにある点線である。同様のチューニング関数の場合、2次元上の応答曲線は正の傾きを持つ。一方、反対のチューニング関数を持つ場合、応答曲線は負の傾きを持つ。このチューニング関数の相関をシグナル相関という。弱い刺激に対する応答の代表としてS1、強い刺激に対する応答としてS2の2点が描ける。
 '''図2A、B'''の左のパネルは2つの神経細胞が類似したチューニング関数を持つ場合と性質の大きく異なるチューニング関数を持つ場合を示している。一方では、刺激が強くなると2つの神経細胞の発火頻度がともに大きくなる。他方では、2つのうち1つの神経細胞は刺激が強くなると発火頻度が小さくなる性質を持つ。2つの神経細胞の応答を各神経細胞の発火頻度を軸とする2次元の平面に描いたものが'''図2A、B'''の右パネルにある点線である。同様のチューニング関数の場合、2次元上の応答曲線は正の傾きを持つ。一方、反対のチューニング関数を持つ場合、応答曲線は負の傾きを持つ。このチューニング関数の相関を[[シグナル相関]]という。弱い刺激に対する応答の代表としてS1、強い刺激に対する応答としてS2の2点が描ける。


 チューニング関数は各刺激の強さに対する神経細胞の平均発火頻度であり、実際には発火頻度は試行毎に異なる発火頻度が生成される。2つの神経細胞がある場合はこの生成は相関を伴うことがある。例えば、神経細胞の活動が正の相関を持つ場合には、一方の神経細胞が高い発火頻度を示した時にもう一方も高い発火頻度を示す。ある刺激が与えられたもとでの相関(共分散)をノイズ相関と呼ぶ。図2の右パネルの楕円は、刺激S1とS2が与えられた時に、神経活動が正の相関を持つ場合にサンプルが従う同時確率分布の等高線を描いており、その大きさはノイズの強さを表す。
 チューニング関数は各刺激の強さに対する神経細胞の平均発火頻度であり、実際には発火頻度は試行毎に異なる発火頻度が生成される。2つの神経細胞がある場合はこの生成は相関を伴うことがある。例えば、神経細胞の活動が正の相関を持つ場合には、一方の神経細胞が高い発火頻度を示した時にもう一方も高い発火頻度を示す。ある刺激が与えられたもとでの相関(共分散)を[[ノイズ相関]]と呼ぶ。'''図2'''の右パネルの楕円は、刺激S1とS2が与えられた時に、神経活動が正の相関を持つ場合にサンプルが従う同時確率分布の等高線を描いており、その大きさはノイズの強さを表す。


 相関を伴う同時活動からS1とS2を弁別しようとするとき、2つの分布がなるべく重ならない状態であることが望ましい。そのような状態は当然、発火頻度の分散が小さい場合に実現されるが、ここでは個々の発火頻度の変動のレベルは一定とする(楕円の面積は変わらないとする)。このような時、ノイズ相関がどのように分布の重なりに影響を与えるかはシグナル相関に依存する。例えば'''図2A'''にあるように、2つの神経細胞が正のシグナル相関を持つ場合、正のノイズ相関があると分布の重なりは大きくなり弁別が難しくなる。もし負のノイズ相関を示す場合、分布の重なりは小さくなり弁別が容易になる。一方'''図2B'''にあるように、2つの神経細胞が負のシグナル相関を持つ場合、正の相関があると分布の重なりは小さくなり弁別が容易になる。もし負のノイズ相関があると分布の重なりは大きくなり弁別が難しくなる。すなわち、シグナル相関と反対のノイズ相関を持っている方が弁別は容易になる。一般に集団活動による刺激の弁別/推定の精度は神経細胞間の相関だけで決められるわけではなく、弁別/推定の方法と個々の神経細胞のチューニング関数および相関構造の関係において決まってくる。そのため神経細胞集団の正の相関活動が必ずしも推定に悪影響を与えるわけではない。これらの関係はKenneth O. Johnsonによって初めて数学的に示された<ref name=Johnson1980><pubmed>7411183</pubmed></ref>[Johnson 1980]。
 相関を伴う同時活動からS1とS2を弁別しようとするとき、2つの分布がなるべく重ならない状態であることが望ましい。そのような状態は当然、発火頻度の分散が小さい場合に実現されるが、ここでは個々の発火頻度の変動のレベルは一定とする(楕円の面積は変わらないとする)。このような時、ノイズ相関がどのように分布の重なりに影響を与えるかはシグナル相関に依存する。例えば'''図2A'''にあるように、2つの神経細胞が正のシグナル相関を持つ場合、正のノイズ相関があると分布の重なりは大きくなり弁別が難しくなる。もし負のノイズ相関を示す場合、分布の重なりは小さくなり弁別が容易になる。一方'''図2B'''にあるように、2つの神経細胞が負のシグナル相関を持つ場合、正の相関があると分布の重なりは小さくなり弁別が容易になる。もし負のノイズ相関があると分布の重なりは大きくなり弁別が難しくなる。すなわち、シグナル相関と反対のノイズ相関を持っている方が弁別は容易になる。一般に集団活動による刺激の弁別/推定の精度は神経細胞間の相関だけで決められるわけではなく、弁別/推定の方法と個々の神経細胞のチューニング関数および相関構造の関係において決まってくる。そのため神経細胞集団の正の相関活動が必ずしも推定に悪影響を与えるわけではない。これらの関係はKenneth O. Johnsonによって初めて数学的に示された<ref name=Johnson1980><pubmed>7411183</pubmed></ref>[Johnson 1980]。


===冗長性を生む相関構造の探索===
===冗長性を生む相関構造の探索===
 こうした議論を3つ以上の神経細胞に拡張する場合、複数の神経細胞の活動から刺激を推定する際の推定値の精度を定量化することで明快に議論することができる。神経細胞集団による刺激の推定精度を用いることで、冗長な集団符号化を実現する相関構造を明らかにする試みが行われてきた。これらの研究は主に、サルやマウスの第一次視覚野の方位選択制細胞による、格子状刺激(grating stimulus)の方位の符号化を題材に行われている。
 こうした議論を3つ以上の神経細胞に拡張する場合、複数の神経細胞の活動から刺激を推定する際の推定値の精度を定量化することで明快に議論することができる。神経細胞集団による刺激の推定精度を用いることで、冗長な集団符号化を実現する相関構造を明らかにする試みが行われてきた。これらの研究は主に、サルや[[マウス]]の第一次視覚野の[[方位選択性細胞]]による、格子状刺激(grating stimulus)の方位の符号化を題材に行われている。


 個々の神経細胞の発火頻度のみを使用して刺激の値を推定したい。これは、個々の神経細胞の発火頻度に重みをつけた線形関数で刺激の値を推定することで実現される。推定に最も適した重み付けがあり、そのような重みを持つ推定器を最適線形復号器(optimal linear decoder)という。この最適線形復号器の推定精度は線形フィッシャー情報量(linear Fisher information)によって与えられることが知られている。線形フィッシャー情報量はチューニング関数の刺激による微分と神経活動の相関(共分散行列)からなり、情報量はチューニング関数と活動相関の関係性において決定される事が示されている。線形フィッシャー情報量はまた、発火頻度の変化からごく僅かな刺激の変化を弁別するときの精度を表す。
 個々の神経細胞の発火頻度のみを使用して刺激の値を推定したい。これは、個々の神経細胞の発火頻度に重みをつけた線形関数で刺激の値を推定することで実現される。推定に最も適した重み付けがあり、そのような重みを持つ推定器を[[最適線形復号器]](optimal linear decoder)という。この最適線形復号器の推定精度は[[線形フィッシャー情報量]](linear Fisher information)によって与えられることが知られている。線形フィッシャー情報量はチューニング関数の刺激による微分と神経活動の相関([[共分散行列]])からなり、情報量はチューニング関数と活動相関の関係性において決定される事が示されている。線形フィッシャー情報量はまた、発火頻度の変化からごく僅かな刺激の変化を弁別するときの精度を表す。


 AbbottとDayanは線形フィッシャー情報量を用いて、神経細胞がそれぞれ異なるチューニング関数を有するときに、一般に正の相関が情報量を下げたり、上限を与えるとは限らない事を示した<ref name=Abbott1999><pubmed>9950724</pubmed></ref>[Abbott 1999]。一方で、正の相関であってもより現実的な相関構造を仮定すると、これらはやはり情報量を下げる効果があることも示した。方位選択性細胞は同様の選好方向を持つ神経細胞同士の方が異なる選好方向を持つ神経細胞同士よりも強い正のノイズ相関を示す。このような相関の構造を制限範囲相関(limiting-range correlations)と呼ぶ。観測に即したこの制限範囲相関では相関が強いほど情報量が下がるが、数を増やしても一般には情報が制限されることはないことが示された。制限範囲相関はその後、釣鐘型の方位選択曲線と組み合わせて情報が制限される場合が詳しく調べられたが<ref name=Sompolinsky2001><pubmed>11735965</pubmed></ref>[Sompolinsky 2001]、より現実的に細胞ごとに幅や最大値の異なる非一様な方位選択曲線を想定すると、やはり制限範囲相関が必ずしも相関を下げる訳ではない事が示され<ref name=Ecker2011><pubmed>21976512</pubmed></ref>[Ecker 2010]、制限範囲相関が冗長性を生む機構であるとは断言できない状況となった<ref name=Kohn2016><pubmed>27145916</pubmed></ref>[Kohn 2016]。
 [[w:Larry Abbott|Abbott]]と[[w:Peter Dayan|Dayan]]は線形フィッシャー情報量を用いて、神経細胞がそれぞれ異なるチューニング関数を有するときに、一般に正の相関が[[情報量]]を下げたり、上限を与えるとは限らない事を示した<ref name=Abbott1999><pubmed>9950724</pubmed></ref>[Abbott 1999]。一方で、正の相関であってもより現実的な相関構造を仮定すると、これらはやはり情報量を下げる効果があることも示した。方位選択性細胞は同様の選好方向を持つ神経細胞同士の方が異なる選好方向を持つ神経細胞同士よりも強い正のノイズ相関を示す。このような相関の構造を[[制限範囲相関]](limiting-range correlations)と呼ぶ。観測に即したこの制限範囲相関では相関が強いほど情報量が下がるが、数を増やしても一般には情報が制限されることはないことが示された。制限範囲相関はその後、釣鐘型の方位選択曲線と組み合わせて情報が制限される場合が詳しく調べられたが<ref name=Sompolinsky2001><pubmed>11735965</pubmed></ref>[Sompolinsky 2001]、より現実的に細胞ごとに幅や最大値の異なる非一様な方位選択曲線を想定すると、やはり制限範囲相関が必ずしも相関を下げる訳ではない事が示され<ref name=Ecker2011><pubmed>21976512</pubmed></ref>[Ecker 2010]、制限範囲相関が冗長性を生む機構であるとは断言できない状況となった<ref name=Kohn2016><pubmed>27145916</pubmed></ref>[Kohn 2016]。


 2014年にMoreno-Boteらは新たな理論を提出した。これによると、彼らが微分相関(differential correlations)と呼ぶ特定の相関がノイズ相関に少しでも存在すると、線形フィッシャー情報量は神経細胞の数が増えても必ず制限されることが示された<ref name=Moreno-Bote2014><pubmed>25195105</pubmed></ref>。それだけでなく、彼らは微分相関が唯一情報量を制限することのできる相関構造であると主張した。その後、微分相関が出現するメカニズムや実験データでの検証が始まった。特に2020年代から、数千の神経細胞から同時に記録を取ることができるようになり、実際に複数の脳領域で、情報量が制限されている様子を観測で確かめることができるようになってきた<ref name=Rumyantsev2020><pubmed>32238928</pubmed></ref><ref name=Bartolo2020><pubmed>31941667</pubmed></ref><ref name=Kafashan2021><pubmed>33473113</pubmed></ref>[Rumyantsev2020; Bartolo 2020; Kafashan 2021]。これらのデータ解析を通して、冗長符号化の実態が明らかになりつつある。
 2014年にMoreno-Boteらは新たな理論を提出した。これによると、彼らが微分相関(differential correlations)と呼ぶ特定の相関がノイズ相関に少しでも存在すると、線形フィッシャー情報量は神経細胞の数が増えても必ず制限されることが示された<ref name=Moreno-Bote2014><pubmed>25195105</pubmed></ref>。それだけでなく、彼らは微分相関が唯一情報量を制限することのできる相関構造であると主張した。その後、微分相関が出現するメカニズムや実験データでの検証が始まった。特に2020年代から、数千の神経細胞から同時に記録を取ることができるようになり、実際に複数の脳領域で、情報量が制限されている様子を観測で確かめることができるようになってきた<ref name=Rumyantsev2020><pubmed>32238928</pubmed></ref><ref name=Bartolo2020><pubmed>31941667</pubmed></ref><ref name=Kafashan2021><pubmed>33473113</pubmed></ref>[Rumyantsev2020; Bartolo 2020; Kafashan 2021]。これらのデータ解析を通して、冗長符号化の実態が明らかになりつつある。