メラトニン

2013年3月18日 (月) 17:48時点におけるYfukada (トーク | 投稿記録)による版

英語名: melatonin

メラトニンは,N-アセチル-5-メトキシトリプタミンの構造をもつ生理活性アミン誘導体である[1] 。カエル皮膚の黒色素胞を退色(白色化)させる物質として,ウシの松果体から単離された[2]。脊椎動物においては,主に松果体において合成・分泌されて血中ホルモンとして機能するほか,網膜の視細胞(桿体と錐体)において合成されて網膜の生理機能を調節する局所ホルモンとして機能する事が知られている。多くの動物において,メラトニンの合成と分泌の量は夜間に高く昼間に低い日内リズムを示す。このリズムは光条件を一日の間で一定にしても持続する事から,個体内の計時機構である概日時計の制御下にある事が分かる。動物の行動パターンが昼行性であるか夜行性であるかに関わらず夜間に分泌量が多い事から「夜のホルモン」とも呼ばれている。メラトニンのこのような分泌リズムは,昼行性であるか夜行性であるかに応じて分泌量の多い時間帯が異なるコルチゾールの分泌リズムと対照的である。

合成と分泌

メラトニンはアミノ酸の1つであるトリプトファンから,4段階の酵素反応を経て生合成される(図1)。生合成されたメラトニンは細胞内で貯蔵されず速やかに細胞外へと分泌されるため,合成量がそのまま分泌量と相関する。

制御

メラトニンの生合成経路(図1)のうち,律速段階はAANATによるセロトニンのアセチル化反応である。AANATは遺伝子発現の量的な制御と翻訳後修飾による質的な制御の両方により活性が調節され,メラトニンの合成量が変動する。松果体におけるメラトニンの合成・分泌の量には,昼に低く夜に高い概日リズムが顕著に観察される。また,メラトニン合成は概日時計による制御の他に,光環境による制御も受ける。すなわち,メラトニン合成が活性化する夜間に光を照射すると,メラトニン合成が急速に抑制される。このような概日リズムや光による制御を生み出す仕組みは動物種により異なる。

哺乳類の松果体の場合,概日時計の中枢は間脳視床下部の視交叉上核(suprachiasmatic nucleus,SCN)に存在する。SCNは約1日周期の強力な振動子を持っており,松果体は複数のシナプス連絡を介してSCNからの時刻情報を受け取る。夜間におけるメラトニン合成の上昇は,松果体に入力する交感神経終末からのノルアドレナリンの放出が引き金となり開始する。放出されたノルアドレナリンは,松果体に存在するβアドレナリン受容体を介して細胞内cAMP濃度を上昇させ,活性化したPKAがCREBをリン酸化する。リン酸化されて活性したCREBはAanat遺伝子のプロモーター領域に存在するCREに結合して,Aanat遺伝子の転写を活性する。この結果,松果体におけるAanat mRNA量が夜(暗期)の開始から2時間以内に100倍以上に増加し,AANAT蛋白質の急激な増加を引き起こし,メラトニンの合成量が上昇する。

一方,網膜視細胞におけるメラトニン合成の場合,SCN由来の時刻情報は用いられず,視細胞内で自律的に振動する概日時計の支配下にある。Aanat遺伝子のプロモーター領域にはE-boxと呼ばれるシス領域が存在するが,この領域に時計遺伝子であるBMAL1/CLOCK(もしくはBMAL1/NPAS2)が約1日周期のリズムをもって結合する事によりAanat遺伝子の周期的な発現が誘導される。前述のようにAanat遺伝子の上流にはCREが存在し,視細胞におけるAanatの発現にもcAMP/PKA/CREBが寄与している。

AANATは遺伝子発現のみならず,翻訳後にも制御を受けることが知られている。松果体において夜間に活性化するPKAはAANATをリン酸化することが知られており,リン酸化されたAANATは足場蛋白質である14-3-3と結合する。遊離のAANAT はプロテアソーム系により短時間で分解されるのに対し,14-3-3と結合したAANATは蛋白質分解を免れるため,蛋白質量が増加する。また,AANAT/14-3-3複合体は遊離のAANATに比べてセロトニンのアセチル化活性が高い事が生化学アッセイより示されている。このような翻訳後の制御は,夜間におけるメラトニン合成の活性化に寄与していると考えられている。また,夜間に光を照射するとメラトニン合成が急速に抑制されるが,これは松果体におけるAANAT量の急激な減少を伴っている(ラットの場合,半減期が約3.5分)。これは松果体におけるAANAT量の急激な低下を伴っており,遊離のAANATが速やかに分解される事がこの光応答に重要であると考えられている。

生理作用

メラトニンはG蛋白質共役型の受容体を介して生理作用を発揮する。哺乳類には2種類のメラトニン受容体が発見されているが,どちら受容体もメラトニンと結合するとGiが活性化してAC活性が低下し,2次メッセンジャーである細胞内cAMP濃度が低下する。

概日リズム

松果体から分泌されるメラトニンは血流に乗り,概日時計の中枢であるSCNが生み出す時刻情報を他の脳領域や末梢組織に伝達する役割を果たし,睡眠の誘導などの概日リズムを生み出す。またSCNにもメラニン受容体が存在しており,中枢時計の時刻が松果体からのフィードバック制御を受ける事が知られている。

光周性

哺乳類の長日応答は,下垂体隆起部(pars tuberalis)において甲状腺刺激ホルモン(thyroid stimulating hormone,TSH)が産生される事により開始する。下垂体隆起部にはメラトニン受容体が高く発現しており,メラトニンは下垂体隆起部のTSHの産生を抑制するが,日長が長くなる(夜が短くなる)とメラトニンが分泌される時間帯が短くなりTSH産生の抑制が解除される。この結果,生殖腺の発達する。このにようにメラトニンは哺乳類において日長を知る為の重要な因子として機能している。[3]


関連項目


参考文献

  1. A. B. Lerner et al. (1959)
    Structure of melatonin.
    J. Am. Chem. Soc.
    81, 6084
  2. A. B. Lerner et al. (1958)
    Isolation of melatonin, the pineal gland factor that lightens melanocytes.
    J. Am. Chem. Soc. 80, 2587
  3. 海老原史樹文,吉村崇 編
    時間生物学
    化学同人: 2012

(執筆者:鳥居雅樹,深田吉孝 担当編集委員:林康紀)