マイクロサッケード

2013年9月4日 (水) 17:12時点におけるTfuruya (トーク | 投稿記録)による版

吉田 正俊
自然科学研究機構生理学研究所 発達生理学研究系・認知行動発達研究部門
DOI XXXX/XXXX 原稿受付日:2012年12月26日 原稿完成日:2013年月日
担当編集委員:伊佐 正(自然科学研究機構生理学研究所)

英語名:microsaccade 独:Mikrosakkade 仏:micro saccade

同義語:マイクロサッカード、フリック (flick)

類語:固視微動、fixational eye movement

 マイクロサッケードとは、固視中の眼球運動固視微動)のうち、高速度の跳躍的運動であるものを指す。振幅は1度以下、運動にかかる時間(duration)は25 ms程度、平均速度は10 deg / sec程度、頻度は1-3Hz程度である。マイクロサッカードは意志によって止めることは出来ない非随意的運動ではあるが、注意などによってその方向や頻度が影響を受ける。マイクロサッカードの指令は上丘吻側の固視ニューロン領域で生成されていると考えられている。

マイクロサッケードとは

 われわれが視野の物体を見るために視点を固定(固視)するとき、われわれの眼球は完全に動きを止めているわけではない。固視微動またはfixational eye movementと呼ばれる三種類の眼球運動がある。一番目は高頻度(90Hz程度)で小振幅(<1 min of arc)のトレモア (tremor)、二番目は低速度(~6 min of arc / sec)のドリフト (drift)、三番目が高速度(~10 deg / sec)の跳躍的運動であるマイクロサッケード (microsaccade) (フリック(flick)とも呼ばれる)である[1]。本項目では三番目のマイクロサッケードについて記述する。

性質

 マイクロサッケードは振幅は1度以下、運動にかかる時間(duration)は25 ms程度、平均速度は10 deg / sec程度、頻度は1-3Hz程度であるが、個体差、種差などによって報告はばらついている[1]

 マイクロサッケードは運動としてはその名の通りサッケード(急速眼球運動)の振幅を小さくしたものであると言える。たとえば、サッケードでは運動にかかる時間(duration)と最高速度(peak velocity)との間に正の相関が見られ、主系列曲線(main sequence curve)として記述することが出来るが、マイクロサッカードもこの主系列曲線の上に乗る[2]

マイクロサッケードと視覚

 マイクロサッケードは単なる脳内ノイズの結果ではなくて、機能を持つと考えられている。マイクロサッカードは他の固視微動とともに網膜像を絶えず変化させることによって視覚入力を絶えず生成していると考えられている。つまり、静止網膜像の実験では、固視微動に同期させて視覚像を動かすことによって網膜像の変化をなくすと視知覚の消去(fading)が起こる(たとえば古典的な実験としてはYarbus[3]など)。

 また、マイクロサッカードは意志によって止めることは出来ない非随意的運動ではあるが、ランダムな運動というわけではない。注意などによってその方向や頻度が影響を受ける[3]。たとえば周辺視野に視覚刺激を提示すると、その方向へのマイクロサッカードの頻度は提示直後(0.2秒程度)には上昇し、さらにそのあと(0.5秒程度)では頻度は平均よりも低下する[4]

脳内メカニズム

 マイクロサッケードの指令は上丘吻側の固視ニューロン領域で生成されていることを示唆する報告としてHafed et. al. がある[5]。この論文で著者らはマカクザル|マカクザルが固視課題をしている間の上丘の活動を記録してその反応野をマップすることによって、上丘の眼球運動マップの吻側部にある低振幅部分のニューロンが活動することを明らかにした。

 また、Martinez-Conde et.al[6]では、マカクザルが固視課題をしている間の一次視覚野V1)の活動を記録して、視覚応答への影響を見たところ、マイクロサッケードの直後(50-100 ms)のV1の応答は増強される。これはマイクロサッケードが視知覚を増強している可能性を示唆している。

計算論的モデル

 マイクロサッケードの生成過程は上丘及びその下流の脳幹の神経ネットワークのモデルによって説明することが出来る。これまでに報告されている計算論的モデルとしては、Hafed[7]、Engbert[8]、Inagaki et.al.[9]などが挙げられる。

関連項目

参考文献

  1. 1.0 1.1 Martinez-Conde, S., Macknik, S.L., & Hubel, D.H. (2004).
    The role of fixational eye movements in visual perception. Nature reviews. Neuroscience, 5(3), 229-40. [PubMed:14976522] [WorldCat] [DOI]
  2. Zuber, B.L., Stark, L., & Cook, G. (1965).
    Microsaccades and the velocity-amplitude relationship for saccadic eye movements. Science (New York, N.Y.), 150(3702), 1459-60. [PubMed:5855207] [WorldCat] [DOI]
  3. 3.0 3.1 Yarbus, A. L.
    Eye Movements and Vision (Plenum, New York, 1967) 引用エラー: 無効な <ref> タグ; name "ref3"が異なる内容で複数回定義されています
  4. Hafed, Z.M., & Clark, J.J. (2002).
    Microsaccades as an overt measure of covert attention shifts. Vision research, 42(22), 2533-45. [PubMed:12445847] [WorldCat] [DOI]
  5. Hafed, Z.M., Goffart, L., & Krauzlis, R.J. (2009).
    A neural mechanism for microsaccade generation in the primate superior colliculus. Science (New York, N.Y.), 323(5916), 940-3. [PubMed:19213919] [PMC] [WorldCat] [DOI]
  6. Martinez-Conde, S., Macknik, S.L., & Hubel, D.H. (2000).
    Microsaccadic eye movements and firing of single cells in the striate cortex of macaque monkeys. Nature neuroscience, 3(3), 251-8. [PubMed:10700257] [WorldCat] [DOI]
  7. Hafed, Z.M. (2011).
    Mechanisms for generating and compensating for the smallest possible saccades. The European journal of neuroscience, 33(11), 2101-13. [PubMed:21645104] [WorldCat] [DOI]
  8. Engbert, R. (2012).
    Computational modeling of collicular integration of perceptual responses and attention in microsaccades. The Journal of neuroscience : the official journal of the Society for Neuroscience, 32(23), 8035-9. [PubMed:22674278] [PMC] [WorldCat] [DOI]
  9. Inagaki, K., Hirata, Y., & Usui, S. (2011).
    A model-based theory on the signal transformation for microsaccade generation. Neural networks : the official journal of the International Neural Network Society, 24(9), 990-7. [PubMed:21741208] [WorldCat] [DOI]