星 英司
公益財団法人東京都医学総合研究所
DOI:10.14931/bsd.973 原稿受付日:2015年6月4日 原稿完成日:2015年xx月xx日
担当編集委員:一戸 紀孝(国立精神・神経医療研究センター 神経研究所)
英語名:frontal cortex, frontal lobe
前頭葉の構成
Brodmannは、大脳皮質を細胞構築学的に52の領野に分けたが、機能区分との関連性が高いため、現在でも重要な指標となっている。一次運動野はBrodmann4野に、高次運動野は6野と24野に相当する。前頭前野は、9野、46野などの複数の領野からなっている。また、前頭前野の最後方部に8野があり、注意や眼球運動に関連する。
前頭葉の各領域の特徴を「前後軸」と「内外軸」の観点から捉え直すことができる。前方から後方へ向かう「前後軸」にそって、前頭前野、高次運動野(6野、24野)、一次運動野(4野)がある(図1)。前方から後方へ向かって、表現される内容が抽象的内容から具体的動作へと移り変わる(「前後軸」、図2)。さらに、内側から外側の方向にも別の機能分化がある(「内外軸」、図3、4)。
一次運動野
一次運動野(Primary motor area)は、中心溝の前方(中心前回)にあり、4野に相当する(図1)。「内外軸」にそって体部位再現があり、内側から外側へと向かって、下肢、体幹、上肢、手指、顔と口唇の動きを司る部位がある(図3)。精緻な動きを行う手指や口唇の動きを支配する部位が広い領域を占める一方で、それが必要とされない体幹や下肢を支配する部位は狭い。一次運動野は最終的な運動出力を形成する場である(「前後軸」、図2)。皮質脊髄路の大部分が延髄錐体から脊髄へ入る際に左右が入れ替わるため(錐体交叉)、左側(右側)の一次運動野は右側(左側)の体の動きを、主として制御するという特徴がある。したがって、一次運動野の出血や梗塞によってその機能が失われると、体部位再現に対応した強い麻痺が対側の体に生じる。
高次運動野
一次運動野の前方には、高次運動野(Higher-order motor areas)が広がっている(図1)。外側に運動前野が、より内側に補足運動野が、最も内側には帯状皮質運動がある(「内外軸」、図4)。運動前野と補足運動野は6野にあり、帯状皮質運動野は24野にある。
運動前野
運動前野(Premotor area)は、視覚情報を初めとする感覚情報に基づいて動作を構築する過程で中心的な役割を果たす(「内外軸」、図4)。代表的な例として、手を伸ばして物をつかむ動作や、食べ物を口に入れる動作が挙げられる。運動前野は背側部(背側運動前野)と腹側部(腹側運動前野)に大別される[3] [4](図1)。
背側運動前野と腹側運動前野の機能的役割は異なる。視覚情報が指示する内容に従って動作を選択する過程(例:赤信号をみてブレーキを踏む)は、条件付き視覚運動変換と呼ばれるが、こうした場合に、背側運動前野は動作選択の場として重要な役割を果たす。到達運動において、背側運動前野は肩を中心とした腕の動きを制御しており、つかもうとする物へ向かって腕全体を運ぶ過程に関与する。これに対し、腹側運動前部は手や口で物体をつかむことにおいて重要であり、物体の特徴(形、大きさ、傾きなど)に応じて、手や口の形状を変化させる過程に関与する。背側運動前野は体を中心とした動作制御(身体を中心とした座標系を用いており、体をどう動かすかという観点からの制御)に関与し、腹側運動前野は対象物を中心とした動作制御(物体を中心とした座標系を用いており、どう対象物に働きかけるかという観点からの制御)に関与している。
背側運動前野と腹側運動前野の機能障害は異なった病像を呈する。背側運動前野系の障害では動作選択や手を物のある方向へ向かわせることに問題が生じる。これに対し、腹側運動前野系の障害では、手や口で物をつかむことに加えて、発語過程に問題が生じる(口唇部の巧緻な運動制御ができなくなるため)。
腹側運動前野には、リゾラティー(Rizzolatti)らによって、ミラーニューロンが報告されている[5]。ミラーニューロンは自分自身で物をつかむ動作を行う際に活動するだけでなく、他者が同じつかむ動作を行うのを観察する際にも同様な活動を示す。ある物体をつかむという特定の動作内容を、自己と他者を超えて表現している。こうした特徴は、他者の動作を観察し、その内容を取り入れて自身の動作を構築する際に大変有用である。
補足運動野
前頭葉内側面の補足運動野(Supplementary motor area)を電気刺激すると、前方から後方へ向かって、顔、前肢、後肢の運動が誘発される。一次運動野では単純な運動が誘発されるが、補足運動野では複数の間節にまたがる複雑な運動が誘発される。補足運動野よりも前方に、体部位再現が明瞭ではないが、高次な運動制御に関与する部位がある。この部位も6野にあり、前補足運動野と呼ばれる[6] [7]。
感覚誘導性の制御で特徴づけられる運動前野とは対照的に、補足運動野は自発的な動作開始、記憶された情報にもとづいた動作の順序制御に関与する(「内外軸」、図4)。さらに、補足運動野は、左右の手に異なる動作をさせて両手を協調的に使用する過程で中心となる。前補足運動野は、順序動作を組み替える過程、動作の中止や変更、複数動作の段階の制御(例:1番目、2番目など)といった、動作制御の高次的側面に関与する。補足運動野が障害されると、一次運動野でみられるような麻痺症状は示さないが、自発的な動作発現、順序動作の制御、左右の手の協調制御に問題が生じる。
前補足運動野は、順序動作を組み替える過程、動作の中止や変更、複数動作の段階の制御(例:1番目、2番目など)といった、動作制御の高次的側面に関与する。
帯状皮質運動野
帯状溝の中に帯状皮質運動野(Cingulate motor area)がある(図1)。帯状皮質運動野は大脳辺縁系(帯状皮質、扁桃体、海馬、視床下部、島皮質、大脳基底核の前方腹側系など)からの豊富な入力によって特徴づけられる[8](「内外軸」、図4)。
大脳辺縁系は系統発生的に古い部位である、帯状皮質、扁桃体、海馬、視床下部、島皮質、大脳基底核の前方腹側系などからなる。扁桃体や海馬は現在の状況や環境の記憶にもとづいて快感、嗜癖、恐怖といった情動を生成する過程に関与する。視床下部は体内環境情報にもとづいて空腹満腹感や乾きの感覚を生成する過程に関与する。島皮質は痛みの処理に重要である。痛みは、感覚要素(痛みの強度の知覚)と情動要素(痛みの不快感)からなる。感覚要素の処理は一次体性感覚野と二次体性感覚野によってなされ、島皮質でこれが情動要素へと変換される。扁桃体、海馬、視床下部、島皮質から入力を受ける大脳基底核の部位(側坐核)は、これらで処理された情報とドーパミンやセロトニンがもたらす報酬や罰に関する情報を統合する。
帯状皮質は、情動、痛み、体内環境情報に関する情報を集約する。帯状皮質運動野は、こうした情報に基づいた動作の制御に関与する。集めた情報を意識レベルまで高めることにより、動機付けとなる信号を生成して動作発現へとつなげる。帯状皮質を含む脳損傷では、無動無言症という病態に陥り、自発的な動作や発語が減少する。これは、動機付けとなる信号の消失によるものと思われる。
前頭前野
高次運動野よりも前方に、前頭前野(Prefrontal cortex)がある[9] [10] [11]。前頭前野は高次脳機能の中枢であり、人間で特に大きく発達している。一次運動野では具体的動作が主表現であるのに対して、前頭前野では抽象的行動が主表現である(前頭葉の「前後軸」、図2)。
前頭前野内にも、前後方向の機能分化がある(前頭前野内の「前後軸」)。行動を適切に制御するために、感覚、記憶、情動、運動などに関する幅広い情報を集めるが、こうした特徴は前頭前野の後方部によく当てはまる。一方で、前頭前野の前方部では、他の脳部位から情報を集めるという側面は薄れ、前頭前野内でのやりとりが顕著になる。前方部は抽象的で長期間にわたる行動計画に関与し、後方部は具体的でより直近の行動計画に関与するという傾向がある[12]。
前頭前野の内側面(内側前頭前野)は、行動を発現するための動機付けの制御に関与する(「内外軸」)。帯状皮質運動野や補足運動野の障害のように、内側前頭前野の障害でも自発的な動作や発語の減少がみられる。内側前頭前野はこれらの領域と密接な関係があるので、前頭葉の内側面には行動発現の動機付けを制御するネットワークが存在するとみなせる。
「内外軸」の観点から最も外側にあるとみなせる前頭前野の眼窩面(眼窩前頭皮質)は、多種感覚の情報が入力する一方で、扁桃体からも豊富な入力を受け取る。眼窩前頭皮質は、こうして集められた情報を総合することによって、感覚情報の価値(生体とっての意味)を判断し、適切な行動へと結びつける。眼窩前頭皮質の障害で、感覚刺激に誘発されて文脈に適さない行動をとったり、容易に感覚刺激によって集中が削がれたりするようになる。さらに、眼窩前頭皮質の障害で社会性に問題が生じる。社会的認知においては、相手の表情や声の調子といった複雑な感覚情報の処理が状況に応じて要求されるが、こうした処理過程の問題によると思われる。加えて、眼窩前頭皮質の障害でムードや性格が変化するが、これは扁桃体との機能的なやりとりの不全によると考えられる。
内側前頭前野と眼窩前頭皮質の間には、外側前頭前野がある(「内外軸」)。内側前頭前野と眼窩前頭皮質は大脳辺縁系と密接な関連があるのに対して、外側前頭前野は比較的弱い。一方、外側前頭前野は、他の前頭前野領域、頭頂葉、側頭葉、高次運動野などと連携することによって、行動の企画をする場であり、中枢実行機能を担っている。行動の目的を決定し、それを達成するために必要な行動や動作を時間立てて計画する過程において、外側前頭前野が必須である。外側前頭前野の障害ではこうした機能が失われるため、料理をつくるといった一連の工程を順序立てる必要がある作業が困難になる。
まとめ
本章では、前頭葉の構築に関する基本的考え方を概説した。前頭葉の「前後軸」に沿って機能分化があり、前方部(前頭前野)ではより抽象的な情報の処理がなされていて、後方部(一次運動野)へ向かうにつれて、具体的な運動が表現されるようになる。前頭前野内にも前後軸の機能分化がある。前頭前野と一次運動野の間にある高次運動野は、多種多様な情報を利用して実際の動作を構成する過程に関与する。前頭前野から高次運動野を介して一次運動野へとつながる連絡系があり、こうした流れに沿って、抽象的な行動レベルから実際の動作レベルへと情報が変換されていく。前頭葉内の機能障害もこれに対応しており、一次運動野の障害では強い麻痺症状が生じるが、高次運動野では麻痺よりもむしろ動作を構築する過程で問題が生じる。さらに、前頭前野の障害では、動作よりも、行動の目的決定、複数の動作から成る行動計画の作成、感覚情報の適切な利用、情動の制御、動機付けなどに代表される高次脳機能の障害が顕著となる。もう一つの機能軸は、「内外軸」であって、一次運動野ではこれに沿って、体部位再現がある。内側から外側に向かって、高次運動野では、帯状皮質運動野、補足運動野、運動前野があり、前頭前野では、内側前頭前野、外側前頭前野、眼窩前頭皮質がある。高次運動野と前頭前野の双方で、内側に向かうほど、体内情報、記憶情報、辺縁系情報への依存が大きくなり、外側に向かうほど、感覚情報への依存が大きくなるという傾向がある。こうした基本ルールは、前頭葉の機能だけでなく、脳機能全般やその病態を理解するための枠組みを提供する。
参考文献
- ↑ Passingham, R.E.
The frontal lobes and voluntary action.
Oxford: Oxford University Press 1993 - ↑ 丹治 順
脳と運動 (第2版)
共立出版 2009 - ↑
Hoshi, E., & Tanji, J. (2007).
Distinctions between dorsal and ventral premotor areas: anatomical connectivity and functional properties. Current opinion in neurobiology, 17(2), 234-42. [PubMed:17317152] [WorldCat] [DOI] - ↑
Rizzolatti, G., & Luppino, G. (2001).
The cortical motor system. Neuron, 31(6), 889-901. [PubMed:11580891] [WorldCat] [DOI] - ↑
Rizzolatti, G., & Craighero, L. (2004).
The mirror-neuron system. Annual review of neuroscience, 27, 169-92. [PubMed:15217330] [WorldCat] [DOI] - ↑
Tanji, J. (1994).
The supplementary motor area in the cerebral cortex. Neuroscience research, 19(3), 251-68. [PubMed:8058203] [WorldCat] [DOI] - ↑
Tanji, J. (1996).
New concepts of the supplementary motor area. Current opinion in neurobiology, 6(6), 782-7. [PubMed:9000016] [WorldCat] [DOI] - ↑
Paus, T. (2001).
Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nature reviews. Neuroscience, 2(6), 417-24. [PubMed:11389475] [WorldCat] [DOI] - ↑
Tanji, J., & Hoshi, E. (2008).
Role of the lateral prefrontal cortex in executive behavioral control. Physiological reviews, 88(1), 37-57. [PubMed:18195082] [WorldCat] [DOI] - ↑ Passingham, R.E. and S.P. Wise
The neurobiology of the prefrontal cortex : anatomy, evolution, and the origin of insight.
1st ed. Oxford psychology series. 2012, Oxford, United Kingdom: Oxford University Press. xxii, 399 p. - ↑
Szczepanski, S.M., & Knight, R.T. (2014).
Insights into human behavior from lesions to the prefrontal cortex. Neuron, 83(5), 1002-18. [PubMed:25175878] [PMC] [WorldCat] [DOI] - ↑
Koechlin, E., Ody, C., & Kouneiher, F. (2003).
The architecture of cognitive control in the human prefrontal cortex. Science (New York, N.Y.), 302(5648), 1181-5. [PubMed:14615530] [WorldCat] [DOI]