ナノボディ

2018年8月9日 (木) 07:52時点におけるMasahitoyamagata (トーク | 投稿記録)による版

山形方人<br> Harvard University
DOI:10.14931/bsd.7719 原稿受付日:2018年x月x日 原稿完成日:2018年x月x日
担当編集委員:[1]( xx大学)

英:nanobody 独:Nanobody, Nanoantikörper 仏:nanobody 中:纳米抗体 西:nanoanticuerpo

最も一般的な免疫グロブリンIgGは重鎖と軽鎖からなっているが、ラクダ科や軟骨魚は重鎖のみでできた免疫グロブリンも持っている。この'重鎖抗体は可変領域のみで抗原と結合でき、この小さな単一ドメインはナノボディ(またはVHH)と呼ばれる。ナノボディは、それぞれアミノ酸配列が厳密に定義され、通常の抗体と同じように、免疫沈降法などの生化学的解析や免疫組織化学などに利用できる。また、細胞内でも抗原と結合できる細胞内抗体などとして機能的に発現させることで、さまざまな神経細胞を含めた細胞生物学的分析に応用可能である。診断や抗体医薬への利用も期待される。


単鎖抗体、重鎖抗体 、ナノボディ

 
図1.抗体、重鎖抗体 、ナノボディ

ウサギ、マウスなどに見られる一般的なwj:抗体は重鎖と軽鎖からなる複合体であり、研究、診断、治療などには、IgG、IgMなどの免疫グロブリンとその誘導体(Fab断片など)が広く用いられている(図1)。最も一般的な抗体分子IgGは、別々のwj:可変領域(Variable region)ドメインを持った重鎖と軽鎖からなるヘテロダイマーが1つの抗原を認識し、重鎖のwj:定常領域(Constant region)ドメインを介したジスルフィド結合で、もう一つの同じ重鎖と軽鎖 のヘテロダイマーと一緒になって、IgG1の場合、分子量150kDaほどのY字型のヘテロテトラマーとなっている。また目的に応じて、 抗原との結合能を維持した小型抗体分子、例えばFab(1つの軽鎖および半分の重鎖) のようなプロテアーゼ断片や、重鎖と軽鎖の可変領域ドメインを組換えDNA技術で人工的に接続することで一本鎖の可変断片からなる単鎖抗体(single chain antibody、single chain variable fragment (scFV))がしばしば利用されてきた[1] [2]


一方、1993年、ヒトコブラクダCamelus dromedariusは、 例外的に軽鎖がない重鎖のみでできた特殊な抗体(重鎖抗体 Heavy chain antibodies )も持っていることが、Hamers-Castermanらによって報告された[3][4]。 これは、現存するラクダ科(ヒトコブラクダ、フタコブラクダ、リャマ/グアナコ、アルパカ/ビクーニャ)の動物に共通して見られる抗体である。その後、 軟骨魚(サメ、ギンザメなど)でも類似した重鎖抗体の存在が確認された[5]


サメで見られる重鎖抗体は、IgNAR (new antigen receptor)と呼ばれ、1つの可変領域のドメイン(vNARと呼ばれる)が抗原と結合することができる。一方、ラクダ科の重鎖抗体では、その1つの可変領域ドメインはVHHと呼ばれる。他のポリペプチドの存在なしで抗原と結合する単鎖抗体であるVHHは、その分子量が通常のIgGの10分の1ほどの12-15kDaであり、nm単位の大きさであることから「ナノボディNanobody」と一般的に呼ばれている[6] [7]。 注:実際は、ベルギーのAblynx社(2018年に、フランスのバイオテクノロジー会社Sanofiの傘下となった)の商標となっている。[8]

既知ナノボディの例

ナノボディの情報を系統的に収集してきている中国の南京にある東南大学のiCAN (Institute Collection & Analysis of Nanobody)には、2018年8月現在、約2400のナノボディ配列が登録されている。図2に、ナノボディの1つとして構造が解かれた リャマ由来のGFPナノボディ、図3にはそのアミノ酸配列を示した。このGFPとGFPナノボディのKd値は約1nMである[9]

 
図2.リャマ由来のGFPナノボディ
RCSBのPDBで3OGO, http://www.rcsb.org/structure/3OGO
 
図3.リャマ由来のGFPナノボディのアミノ酸配列’’’
R1からFR4というフレームワーク領域(Framework regions)の中に超可変領域である相補性決定領域(Complementary determining regions)と呼ばれる3つのCDR1-3が見られる


ナノボディの構造的な特徴

ナノボディは、通常120アミノ酸残基のポリペプチドである。基本的には、典型的な免疫グロブリンの可変領域の配列と類似しており、FR1からFR4というフレームワーク領域(Framework regions)の中に超可変領域である相補性決定領域(Complementary determining regions)と呼ばれる3つのCDR1-3が見られる(図3)。


しかしながら、通常の免疫グロブリンの可変領域とは異なる特徴が見られ、それがナノボディの長所ともなっている。第1に、通常の免疫グロブリンに比べて、FR2領域に親水性のアミノ酸残基が多く、ナノボディの水溶性の性質や安定性を高めている[10]。第2に、 通常の免疫グロブリンの6つのCDR(重鎖3つ、軽鎖3つ)の代わりに3つのCDRのみで抗原と結合する。その結果、認識に必要な構造(パラトープparatope)が凸型で小さいので、通常の免疫グロブリンが入り込めないような抗原の構造(エピトープepitope)を認識できる可能性がある[11]。第3に、通常の抗体より長いCDR1, CDR3ループを持つために、結合の親和性や特異性を高めることが可能となっている。これらの水溶性、構造的なコンパクトさ、そして超可変領域の配列の多様性が、ナノボディの利点となると考えられる。

既知ナノボディの作製法

1つのナノボディは、120アミノ酸(cDNAとして360bp)ほどなので、クローニングなどに利用するための配列を付加しても500bp未満の長さに収めることができる。したがって、利用したい特定ナノボディのアミノ酸配列がわかっていれば、いくつかの民間会社が提供している長鎖DNAを化学合成するサービスなどを利用することで短期間のうちにcDNA配列が入手可能である。


多くの種類のナノボディは、目的別に発現ベクターにクローニングした後、 哺乳類細胞だけなく、 細菌、酵母、植物でも産生させることができる。哺乳類細胞では、抗体が本来利用される細胞外だけでなく、細胞内部でも発現させることが可能である(イントラボディ、下記参考)。ただし、ナノボディの配列はそれぞれ異なり、特徴的なジスルフィド結合の生成が結合力あるコンフォメーションを取るために必要な場合、細胞内や細菌などではうまくいかない可能性はある。ナノボディには90℃という高温でも失活しないものもあるように[12][13]、一般に安定性は高いが、これもそれぞれのナノボディの特性による。


新規ナノボディの作製法

一般的な方法としては、重鎖抗体を産生する動物を飼育し、それを抗原で免疫することである。 比較的小型のリャマ Lama glamaのほかに、アルパカVicugna pacos、ヒトコブラクダCamelus dromedarius、ネコザメ Heterodontus francisci が免疫に利用されている。次に免疫動物から血液を採集し、その中にあるB細胞から、可変領域を含むcDNAライブラリーを作製、そのライブラリーを固定化した抗原を使ったファージディスプレイなどのパニングでスクリーニングすることで、cDNA配列を単離し、抗原に結合するナノボディ配列を知ることができる[14][15]

このスクリーニングを効果的に行うための工夫が多数開発されてきている[16]。ファージディスプレイの担体の工夫、グラム陽性バクテリア表面へのディスプレイ、酵母へのディスプレイ、mRNAディスプレイリボソームディスプレイ、細胞内での2ハイブリッドスクリーニングなどが用いられてきている。

特に、最近、これらの方法を組み合わせることで、効率的に行う戦略が考案されている。Fridyらは、免疫動物の結合抗体を精製しその質量スペクトルの結果とファージディスプレイのハイスループットな配列決定を組み合わせる方法で、多数の蛍光タンパク質に結合するナノボディを報告した[17]  。Zimmermann は、リボソームディスプレイ、ファージディスプレイ、ELISAを組み合わせることで、短期間にナノボディ配列を得る戦略を報告している[18]。また、McMahon らは、酵母ディスプレイを用いて、免疫動物を用いない合成ライブラリーをスクリーニングすることで親和性の高いナノボディ配列を得ることができることを示している[19] 。このような非免疫ライブラリーや合成ライブラリーを用いる方法については、まだ適用例が少なく、標準的な方法とされるものが存在しないというのが実情であろう。また、ある程度の抗原親和性を示すナノボディの配列を調整することで、親和性の成熟affinity maturationを行うこともできる[20] 。


ナノボディの利用法

 
図4.ナノボディの利用法

基本的には通常の「抗体」のように生化学的解析、免疫組織化学等に利用できる(図4)。しかし、ナノボディだけでは 通常の抗体と違い定常領域を欠いているため、何らかの修飾が必要である。このことはナノボディが抗体のように簡単に利用できないという不便さになっているが、修飾を実験に合わせて自在に工夫できるという利点でもある。また、定常領域のような余分な構造を持たないので、バックグラウンドを下げ感度や精度の高い解析が可能になるという利点もある。

化学的カップリング

免疫組織化学に最もよく用いられているのは、ナノボディをタンパク質として精製後、色素分子などを化学的にカップリングするという方法である。このような試薬は市販もされている(例、ChromoTek社[21] )。最近、2次抗体の活性を持つナノボディが報告されている[22] 。ナノボディの多くは、大腸菌で活性あるものを大量産生、精製することができるので、一度、配列がわかれば、動物を使用する必要がなくなる。

化学的なカップリングなので、カップリングする分子を工夫することで、目的に合わせて様々なものを作製できる可能性がある[23] 。一方、 アミノ酸残基を修飾するカップリング反応により抗原結合能を失うことも想定されるが、修飾するアミノ酸残基の位置を制御することは可能である[24] 。ナノボディは小さく、通常の抗体では入り込めない箇所に結合することで、高解像度顕微鏡においても、アーチファクトが減少し、有用なツールになると考えられている[25] 。

RANbody

化学的カップリング反応は、しばしばナノボディの活性を消失させるが、実験的にも条件決定など必ずしも容易ではない。この問題を克服するために開発されたプラットフォームがRANbody(Receptor-and-Nanobody)である[26]。RANbodyは、ナノボディを酵素(改良型[[wj:西洋ワサビペルオキシダーゼ]HRP)、抗原性のあるニワトリ抗体IgY、多重エピトープタグなどと融合させたものである。プラスミドを293T細胞などの動物細胞に導入するだけで、培地中に放出されるので容易に利用できる。HRPは大腸菌の中で活性のある酵素として発現させることができない。その一つの解決策として、アスコルビン酸オキシダーゼAPEX2との融合タンパク質を大腸菌で発現させて用いることができるが、APEX2はHRPに比べて活性が弱い[27][28] 。

免疫沈降

免疫沈降法(プルダウンPulldown)では、ナノボディをアガロースや磁気ビーズなどの担体にカップリングすることで得られた担体が市販されているので利用できる。また、多くのナノボディは大量に精製できるので、通常の抗体などのアフィニティクロマトグラフィ担体を作製するのと同じように利用可能である。例えば、GSTなどとの融合タンパク質は、GSTを結合するグルタチン結合ゲルに容易に結合するので、免疫沈降法に有用である[29] [30] [31] 。

intrabody, Chromobody

ナノボディの特徴は、組み換えタンパク質として、細胞内で機能的に発現することができることである。この方法は、一般にイントラボディIntrabody(細胞内ボディ、細胞内抗体)と呼ばれる。

クロモボディChromobodyは、ナノボディをGFPなどの蛍光タンパク質と結合することで、標的分子に結合し、標的分子の染色や追跡が可能になる方法である。例えば、アクチンに対するナノボディをGFPと融合させ、それを細胞内で発現させれば、アクチンがナノボディを介してGFPで標識される。この融合する蛍光タンパク質をSTORM, PALMなどの高解像度顕微鏡に利用できる分子種とすれば、高解像度のバイオイメージングが可能である[32][33][34]

更には、活性型と非活性型のβ2-adrenoceptorのwj:コンフォメーション を識別できるナノボディ[35] を使って、分子の特殊なコンフォメーションを観察ができる。また、GFPナノボディのあるものは、GFPを2つに分割した断片と再構成したGFPを区別できる[36]。リン酸化、アセチル化などのwj:翻訳後修飾(Post-translational modificiation, PTM) された抗原を認識するナノボディは、翻訳後修飾のセンサーとして利用されてきている[37]

分子間相互作用など分子の機能理解への利用

ナノボディは、分子間相互作用(Protein-protein interaction, PPI)の研究ツールとしても有用である[38][39]。このために、1つの効果的な使用法は、イントラボディとして発現させ、FRETLRETといったPPIを検出するための方法と組み合わせたバイオイメージングである[40][41][42]

また、特定のPPIを阻害するナノボディを細胞内で発現させたりすることも可能である。このような方法は、分子機能の研究において、タンパク質の数を調整するRNAiゲノム編集による変異とは違ったアプローチになりうる[43]

また、ユビキチン系を利用することで、標的タンパク質を特異的に分解することも可能である[44]

ナノボディー以外の組み換え結合体

免疫グロブリンに由来するナノボディ以外に、免疫グロブリン以外に見られるタンパク質のドメインを用いて、新たな組み換え結合体を作製する方法もあり、原理的にはこのような組み換え結合体はナノボディと同様な利用法が可能である[45][46]

細胞接着分子[[wj:フィブロネクチン]中の代表的なモチーフであるtype IIIリピートは、免疫グロブリンドメインと構造が類似しており、これを他の分子に結合する免疫グロブリンのように改変することが可能であり、この方法は、モノボディ(monobody)と名付けられている[47] (Koide e tal., 2013)。 ジスルフィド結合によって構造が左右されないので、 細胞内での還元状態の環境でも利用できる。例えば、Arnoldのグループによって開発されたFingRは、PSD95ゲフィリンといったシナプスタンパク質を認識することができる[48] 。

免疫グロブリンを利用しない組み換え結合体には、このほかにも、アンキリンリピートを利用したDARPin(Designed ankyrin repeat proteins)などの方法がある[49][50]。DARPinの場合、パラトープが凸型の構造を取ることで隠れた構造を認識しやすいナノボディとは対照的に認識に関わる構造が凹型になりやすい。

抗体利用の再現性

近年、生物医学系の研究では、論文発表された実験結果の一部が容易に再現できないとされる問題がしばしば指摘されている。抗体の利用は、この再現性問題のもっとも重要な要因の1つであるとされる[51][52][53]。 例えば、ウサギなどのポリクローン抗体は、多数の異なる抗体分子を含んだポリクローン抗体という性格上、免疫した動物などバッチごとの差が大きい。また、wj:モノクローン抗体は、ハイブリドーマを増殖させることで、永遠に同じものを得ることができるはずであるが、市販抗体は予期せず販売中止になったり、ハイブリドーマ細胞は極低温で維持しなくてはならず、災害や研究者の都合により失われてしまうこともある。ナノボディは、アミノ酸配列で定義されるので質は同じであり、DNAという形で安価で長期保存が可能である。また DNAが失われても、アミノ酸配列から容易に再生できるので、抗体の利用周辺の再現性問題の解決の一助として注目されている。

ナノボディの応用

抗体同様に診断への利用とともに、抗体医薬として、感染症、がん、神経系疾患の治療薬などへの利用が期待される[54] 。 特に、Ablynx社が開発した 後天性血栓性血小板減少性紫斑病を対象とした抗VonWillebrand因子ナノボディであるcaplacizumabは、 III相試験で良好な結果が得られており、まもなく発売予定であるとみられる[55]


参考文献

  1. Padlan, E.A. (1994).
    Anatomy of the antibody molecule. Molecular immunology, 31(3), 169-217. [PubMed:8114766] [WorldCat] [DOI]
  2. Frenzel, A., Hust, M., & Schirrmann, T. (2013).
    Expression of recombinant antibodies. Frontiers in immunology, 4, 217. [PubMed:23908655] [PMC] [WorldCat] [DOI]
  3. Hamers-Casterman, C., Atarhouch, T., Muyldermans, S., Robinson, G., Hamers, C., Songa, E.B., ..., & Hamers, R. (1993).
    Naturally occurring antibodies devoid of light chains. Nature, 363(6428), 446-8. [PubMed:8502296] [WorldCat] [DOI]
  4. Muyldermans, S. (2013).
    Nanobodies: natural single-domain antibodies. Annual review of biochemistry, 82, 775-97. [PubMed:23495938] [WorldCat] [DOI]
  5. Flajnik, M.F., & Kasahara, M. (2010).
    Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nature reviews. Genetics, 11(1), 47-59. [PubMed:19997068] [PMC] [WorldCat] [DOI]
  6. Muyldermans, S. (2013).
    Nanobodies: natural single-domain antibodies. Annual review of biochemistry, 82, 775-97. [PubMed:23495938] [WorldCat] [DOI]
  7. Arbabi-Ghahroudi, M. (2017).
    Camelid Single-Domain Antibodies: Historical Perspective and Future Outlook. Frontiers in immunology, 8, 1589. [PubMed:29209322] [PMC] [WorldCat] [DOI]
  8. http://www.ablynx.com/technology-innovation/intellectual-property/
  9. Kubala, M.H., Kovtun, O., Alexandrov, K., & Collins, B.M. (2010).
    Structural and thermodynamic analysis of the GFP:GFP-nanobody complex. Protein science : a publication of the Protein Society, 19(12), 2389-401. [PubMed:20945358] [PMC] [WorldCat] [DOI]
  10. Muyldermans, S., Atarhouch, T., Saldanha, J., Barbosa, J.A., & Hamers, R. (1994).
    Sequence and structure of VH domain from naturally occurring camel heavy chain immunoglobulins lacking light chains. Protein engineering, 7(9), 1129-35. [PubMed:7831284] [WorldCat] [DOI]
  11. De Genst, E., Silence, K., Decanniere, K., Conrath, K., Loris, R., Kinne, J., ..., & Wyns, L. (2006).
    Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proceedings of the National Academy of Sciences of the United States of America, 103(12), 4586-91. [PubMed:16537393] [PMC] [WorldCat] [DOI]
  12. van der Linden, R.H., Frenken, L.G., de Geus, B., Harmsen, M.M., Ruuls, R.C., Stok, W., ..., & Verrips, C.T. (1999).
    Comparison of physical chemical properties of llama VHH antibody fragments and mouse monoclonal antibodies. Biochimica et biophysica acta, 1431(1), 37-46. [PubMed:10209277] [WorldCat] [DOI]
  13. Akazawa-Ogawa, Y., Takashima, M., Lee, Y.H., Ikegami, T., Goto, Y., Uegaki, K., & Hagihara, Y. (2014).
    Heat-induced irreversible denaturation of the camelid single domain VHH antibody is governed by chemical modifications. The Journal of biological chemistry, 289(22), 15666-79. [PubMed:24739391] [PMC] [WorldCat] [DOI]
  14. Pardon, E., Laeremans, T., Triest, S., Rasmussen, S.G., Wohlkönig, A., Ruf, A., ..., & Steyaert, J. (2014).
    A general protocol for the generation of Nanobodies for structural biology. Nature protocols, 9(3), 674-93. [PubMed:24577359] [PMC] [WorldCat] [DOI]
  15. Flajnik, M.F., & Dooley, H. (2009).
    The generation and selection of single-domain, v region libraries from nurse sharks. Methods in molecular biology (Clifton, N.J.), 562, 71-82. [PubMed:19554288] [WorldCat] [DOI]
  16. Liu, W., Song, H., Chen, Q., Yu, J., Xian, M., Nian, R., & Feng, D. (2018).
    Recent advances in the selection and identification of antigen-specific nanobodies. Molecular immunology, 96, 37-47. [PubMed:29477934] [WorldCat] [DOI]
  17. Fridy, P.C., Li, Y., Keegan, S., Thompson, M.K., Nudelman, I., Scheid, J.F., ..., & Rout, M.P. (2014).
    A robust pipeline for rapid production of versatile nanobody repertoires. Nature methods, 11(12), 1253-60. [PubMed:25362362] [PMC] [WorldCat] [DOI]
  18. Zimmermann, I., Egloff, P., Hutter, C.A., Arnold, F.M., Stohler, P., Bocquet, N., ..., & Seeger, M.A. (2018).
    Synthetic single domain antibodies for the conformational trapping of membrane proteins. eLife, 7. [PubMed:29792401] [PMC] [WorldCat] [DOI]
  19. McMahon, C., Baier, A.S., Pascolutti, R., Wegrecki, M., Zheng, S., Ong, J.X., ..., & Kruse, A.C. (2018).
    Yeast surface display platform for rapid discovery of conformationally selective nanobodies. Nature structural & molecular biology, 25(3), 289-296. [PubMed:29434346] [PMC] [WorldCat] [DOI]
  20. Yau, K.Y., Dubuc, G., Li, S., Hirama, T., Mackenzie, C.R., Jermutus, L., ..., & Tanha, J. (2005).
    Affinity maturation of a V(H)H by mutational hotspot randomization. Journal of immunological methods, 297(1-2), 213-24. [PubMed:15777944] [WorldCat] [DOI]
  21. https://www.chromotek.com/
  22. Pleiner, T., Bates, M., & Görlich, D. (2018).
    A toolbox of anti-mouse and anti-rabbit IgG secondary nanobodies. The Journal of cell biology, 217(3), 1143-1154. [PubMed:29263082] [PMC] [WorldCat] [DOI]
  23. Traenkle, B., & Rothbauer, U. (2017).
    Under the Microscope: Single-Domain Antibodies for Live-Cell Imaging and Super-Resolution Microscopy. Frontiers in immunology, 8, 1030. [PubMed:28883823] [PMC] [WorldCat] [DOI]
  24. Pleiner, T., Bates, M., Trakhanov, S., Lee, C.T., Schliep, J.E., Chug, H., ..., & Görlich, D. (2015).
    Nanobodies: site-specific labeling for super-resolution imaging, rapid epitope-mapping and native protein complex isolation. eLife, 4, e11349. [PubMed:26633879] [PMC] [WorldCat] [DOI]
  25. Szymborska, A., de Marco, A., Daigle, N., Cordes, V.C., Briggs, J.A., & Ellenberg, J. (2013).
    Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging. Science (New York, N.Y.), 341(6146), 655-8. [PubMed:23845946] [WorldCat] [DOI]
  26. Yamagata, M., & Sanes, J.R. (2018).
    Reporter-nanobody fusions (RANbodies) as versatile, small, sensitive immunohistochemical reagents. Proceedings of the National Academy of Sciences of the United States of America, 115(9), 2126-2131. [PubMed:29440485] [PMC] [WorldCat] [DOI]
  27. Buser, D.P., Schleicher, K.D., Prescianotto-Baschong, C., & Spiess, M. (2018).
    A versatile nanobody-based toolkit to analyze retrograde transport from the cell surface. Proceedings of the National Academy of Sciences of the United States of America, 115(27), E6227-E6236. [PubMed:29915061] [PMC] [WorldCat] [DOI]
  28. Lam, S.S., Martell, J.D., Kamer, K.J., Deerinck, T.J., Ellisman, M.H., Mootha, V.K., & Ting, A.Y. (2015).
    Directed evolution of APEX2 for electron microscopy and proximity labeling. Nature methods, 12(1), 51-4. [PubMed:25419960] [PMC] [WorldCat] [DOI]
  29. Trinkle-Mulcahy, L., Boulon, S., Lam, Y.W., Urcia, R., Boisvert, F.M., Vandermoere, F., ..., & Lamond, A. (2008).
    Identifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes. The Journal of cell biology, 183(2), 223-39. [PubMed:18936248] [PMC] [WorldCat] [DOI]
  30. Rothbauer, U., Zolghadr, K., Muyldermans, S., Schepers, A., Cardoso, M.C., & Leonhardt, H. (2008).
    A versatile nanotrap for biochemical and functional studies with fluorescent fusion proteins. Molecular & cellular proteomics : MCP, 7(2), 282-9. [PubMed:17951627] [WorldCat] [DOI]
  31. Katoh, Y., Nozaki, S., Hartanto, D., Miyano, R., & Nakayama, K. (2015).
    Architectures of multisubunit complexes revealed by a visible immunoprecipitation assay using fluorescent fusion proteins. Journal of cell science, 128(12), 2351-62. [PubMed:25964651] [WorldCat] [DOI]
  32. Ries, J., Kaplan, C., Platonova, E., Eghlidi, H., & Ewers, H. (2012).
    A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nature methods, 9(6), 582-4. [PubMed:22543348] [WorldCat] [DOI]
  33. Rothbauer, U., Zolghadr, K., Tillib, S., Nowak, D., Schermelleh, L., Gahl, A., ..., & Leonhardt, H. (2006).
    Targeting and tracing antigens in live cells with fluorescent nanobodies. Nature methods, 3(11), 887-9. [PubMed:17060912] [WorldCat] [DOI]
  34. Traenkle, B., & Rothbauer, U. (2017).
    Under the Microscope: Single-Domain Antibodies for Live-Cell Imaging and Super-Resolution Microscopy. Frontiers in immunology, 8, 1030. [PubMed:28883823] [PMC] [WorldCat] [DOI]
  35. Irannejad, R., Tomshine, J.C., Tomshine, J.R., Chevalier, M., Mahoney, J.P., Steyaert, J., ..., & von Zastrow, M. (2013).
    Conformational biosensors reveal GPCR signalling from endosomes. Nature, 495(7442), 534-8. [PubMed:23515162] [PMC] [WorldCat] [DOI]
  36. Yamagata, M., & Sanes, J.R. (2018).
    Reporter-nanobody fusions (RANbodies) as versatile, small, sensitive immunohistochemical reagents. Proceedings of the National Academy of Sciences of the United States of America, 115(9), 2126-2131. [PubMed:29440485] [PMC] [WorldCat] [DOI]
  37. Sato, Y., Mukai, M., Ueda, J., Muraki, M., Stasevich, T.J., Horikoshi, N., ..., & Kimura, H. (2013).
    Genetically encoded system to track histone modification in vivo. Scientific reports, 3, 2436. [PubMed:23942372] [PMC] [WorldCat] [DOI]
  38. Wegner, K.D., Lindén, S., Jin, Z., Jennings, T.L., el Khoulati, R., van Bergen en Henegouwen, P.M., & Hildebrandt, N. (2014).
    Nanobodies and nanocrystals: highly sensitive quantum dot-based homogeneous FRET immunoassay for serum-based EGFR detection. Small (Weinheim an der Bergstrasse, Germany), 10(4), 734-40. [PubMed:24115738] [WorldCat] [DOI]
  39. Choi, Y., Furlon, J.M., Amos, R.B., Griswold, K.E., & Bailey-Kellogg, C. (2018).
    DisruPPI: structure-based computational redesign algorithm for protein binding disruption. Bioinformatics (Oxford, England), 34(13), i245-i253. [PubMed:29949961] [PMC] [WorldCat] [DOI]
  40. Beghein, E., & Gettemans, J. (2017).
    Nanobody Technology: A Versatile Toolkit for Microscopic Imaging, Protein-Protein Interaction Analysis, and Protein Function Exploration. Frontiers in immunology, 8, 771. [PubMed:28725224] [PMC] [WorldCat] [DOI]
  41. Drees, C., Raj, A.N., Kurre, R., Busch, K.B., Haase, M., & Piehler, J. (2016).
    Engineered Upconversion Nanoparticles for Resolving Protein Interactions inside Living Cells. Angewandte Chemie (International ed. in English), 55(38), 11668-72. [PubMed:27510808] [WorldCat] [DOI]
  42. Künzl, F., Früholz, S., Fäßler, F., Li, B., & Pimpl, P. (2016).
    Receptor-mediated sorting of soluble vacuolar proteins ends at the trans-Golgi network/early endosome. Nature plants, 2, 16017. [PubMed:27249560] [WorldCat] [DOI]
  43. Schumacher, D., Helma, J., Schneider, A.F.L., Leonhardt, H., & Hackenberger, C.P.R. (2018).
    Nanobodies: Chemical Functionalization Strategies and Intracellular Applications. Angewandte Chemie (International ed. in English), 57(9), 2314-2333. [PubMed:28913971] [PMC] [WorldCat] [DOI]
  44. Caussinus, E., Kanca, O., & Affolter, M. (2011).
    Fluorescent fusion protein knockout mediated by anti-GFP nanobody. Nature structural & molecular biology, 19(1), 117-21. [PubMed:22157958] [WorldCat] [DOI]
  45. Helma, J., Cardoso, M.C., Muyldermans, S., & Leonhardt, H. (2015).
    Nanobodies and recombinant binders in cell biology. The Journal of cell biology, 209(5), 633-44. [PubMed:26056137] [PMC] [WorldCat] [DOI]
  46. Sha, F., Salzman, G., Gupta, A., & Koide, S. (2017).
    Monobodies and other synthetic binding proteins for expanding protein science. Protein science : a publication of the Protein Society, 26(5), 910-924. [PubMed:28249355] [PMC] [WorldCat] [DOI]
  47. Koide, A., Wojcik, J., Gilbreth, R.N., Hoey, R.J., & Koide, S. (2012).
    Teaching an old scaffold new tricks: monobodies constructed using alternative surfaces of the FN3 scaffold. Journal of molecular biology, 415(2), 393-405. [PubMed:22198408] [PMC] [WorldCat] [DOI]
  48. Gross, G.G., Junge, J.A., Mora, R.J., Kwon, H.B., Olson, C.A., Takahashi, T.T., ..., & Arnold, D.B. (2013).
    Recombinant probes for visualizing endogenous synaptic proteins in living neurons. Neuron, 78(6), 971-85. [PubMed:23791193] [PMC] [WorldCat] [DOI]
  49. Helma, J., Cardoso, M.C., Muyldermans, S., & Leonhardt, H. (2015).
    Nanobodies and recombinant binders in cell biology. The Journal of cell biology, 209(5), 633-44. [PubMed:26056137] [PMC] [WorldCat] [DOI]
  50. Plückthun, A. (2015).
    Designed ankyrin repeat proteins (DARPins): binding proteins for research, diagnostics, and therapy. Annual review of pharmacology and toxicology, 55, 489-511. [PubMed:25562645] [WorldCat] [DOI]
  51. Baker, M. (2015).
    Reproducibility crisis: Blame it on the antibodies. Nature, 521(7552), 274-6. [PubMed:25993940] [WorldCat] [DOI]
  52. Saper, C.B., & Sawchenko, P.E. (2003).
    Magic peptides, magic antibodies: guidelines for appropriate controls for immunohistochemistry. The Journal of comparative neurology, 465(2), 161-3. [PubMed:12949777] [WorldCat] [DOI]
  53. Manuel, S.L., Johnson, B.W., Frevert, C.W., & Duncan, F.E. (2018).
    Revisiting the scientific method to improve rigor and reproducibility of immunohistochemistry in reproductive science. Biology of reproduction, 99(4), 673-677. [PubMed:29688318] [PMC] [WorldCat] [DOI]
  54. Arbabi-Ghahroudi, M. (2017).
    Camelid Single-Domain Antibodies: Historical Perspective and Future Outlook. Frontiers in immunology, 8, 1589. [PubMed:29209322] [PMC] [WorldCat] [DOI]
  55. http://www.ablynx.com/rd-portfolio/overview/