「覚醒剤」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
16行目: 16行目:
<br> <br>  
<br> <br>  


■標的分子への作用メカニズム (図2)<br>  ドーパミン、ノルエピネフリン、セロトニンのトランスポーターおよびシナプス小胞モノアミントランスポーター(VMAT)2は覚せい剤の標的分子であり、特にドーパミントランスポーター(DAT)は重要な役割を担っていると考えられている。 主な作用機序は、腹側被蓋野から大脳皮質と辺縁系に投射するドーパミン作動性神経のシナプス前終末からのドーパミン放出を促進しながらDATやノルエピネフリントランスポーターの再取り込みを阻害することで、特に側坐核内のA10神経付近に細胞質内のドーパミンをシナプス間隙に放出させ、当該部位のドーパミン受容体に大量のドーパミンが曝露することで覚醒作用や快の気分を生じさせることである。 覚せい剤は、DATに作用して交換拡散によってドーパミンを細胞外に放出させることで細胞外ドーパミン濃度を増加させ、また、VMAT2に作用して小胞内のドーパミンを細胞質へ放出させる<ref><pubmed>8494354</pubmed></ref><ref><pubmed>15955613</pubmed></ref><ref><pubmed>11099463</pubmed></ref>。 マウスやラットなどにメタンフェタミンを急性投与すると低用量(0.25~1.0mg/kg)では移所運動量(例:ケージの中を走り回る)が増加する。さらに高用量(&gt;2.5mg/kg)では移所運動量の増加に引き続き、常同行動(例:一か所で舐める・嗅ぐなどの行動を強迫的に繰り返す)が出現する。このようなメタンフェタミンの行動効果のうち、移所運動量は中脳辺縁系ドーパミンニューロン(A10、腹側被蓋野から側坐核や扁桃体に投射)、常同行動は黒質線条体ドーパミンニューロン(A9、黒質緻密層から線条体に投射)が関与している<ref>'''秋山一文'''<br>「VI章 薬物依存の基礎と臨床 覚せい剤依存の基礎」脳とこころのプライマリケア(8)依存<br>''株式会社シナジー(東京)'':2011</ref>。DATヘテロ欠損マウスおよびVMAT2ヘテロ欠損マウスでは、メタンフェタミン急性投与後の運動増加が野生型マウスより少ないが、DATおよびVMAT2両方の発現が低下したマウスではメタンフェタミン急性投与による運動量増加はDATヘテロ欠損マウスとほぼ等しかったことから、メタンフェタミン投与による急性運動量増加効果にはVMAT2よりもDATの発現変化が大きな影響力を持っている可能性が報告されている<ref><pubmed>17377774</pubmed></ref>。 ラットにメタンフェタミンを反復投与すると常同行動の発現潜時が短縮し、急性単回投与で起こる量よりも少ない量で常同行動が起こるようになることが知られており、この過敏反応性は行動感作(逆耐性現象)と呼ばれている。DATヘテロ欠損マウスでは、逆耐性現象の発展が抑制され形成も遅延した。VMAT2ヘテロ欠損マウスにおいても逆耐性現象の形成が遅延したが、発展は野生型と同様であった。DATおよびVMAT2両方の発現が低下したマウスでは、メタンフェタミン反復投与に対して運動量、逆耐性現象の発展・形成はDATヘテロ欠損マウスと差がなく、メタンフェタミン逆耐性現象の形成にはVMAT2の発現低下よりもDATの発現低下がより大きな影響を与えることが示唆されている<ref name="ref2"><pubmed>17377774</pubmed></ref>。  
■標的分子への作用メカニズム (図2)<br>  ドーパミン、ノルエピネフリン、セロトニンのトランスポーターおよびシナプス小胞モノアミントランスポーター(VMAT)2は覚せい剤の標的分子であり、特にドーパミントランスポーター(DAT)は重要な役割を担っていると考えられている。 主な作用機序は、腹側被蓋野から大脳皮質と辺縁系に投射するドーパミン作動性神経のシナプス前終末からのドーパミン放出を促進しながらDATやノルエピネフリントランスポーターの再取り込みを阻害することで、特に側坐核内のA10神経付近に細胞質内のドーパミンをシナプス間隙に放出させ、当該部位のドーパミン受容体に大量のドーパミンが曝露することで覚醒作用や快の気分を生じさせることである。 覚せい剤は、DATに作用して交換拡散によってドーパミンを細胞外に放出させることで細胞外ドーパミン濃度を増加させ、また、VMAT2に作用して小胞内のドーパミンを細胞質へ放出させる<ref><pubmed>8494354</pubmed></ref><ref><pubmed>15955613</pubmed></ref><ref><pubmed>11099463</pubmed></ref>。 マウスやラットなどにメタンフェタミンを急性投与すると低用量(0.25~1.0mg/kg)では移所運動量(例:ケージの中を走り回る)が増加する。さらに高用量(&gt;2.5mg/kg)では移所運動量の増加に引き続き、常同行動(例:一か所で舐める・嗅ぐなどの行動を強迫的に繰り返す)が出現する。このようなメタンフェタミンの行動効果のうち、移所運動量は中脳辺縁系ドーパミンニューロン(A10、腹側被蓋野から側坐核や扁桃体に投射)、常同行動は黒質線条体ドーパミンニューロン(A9、黒質緻密層から線条体に投射)が関与している<ref>'''秋山一文'''<br>「VI章 薬物依存の基礎と臨床 覚せい剤依存の基礎」脳とこころのプライマリケア(8)依存<br>''株式会社シナジー(東京)'':2011</ref>。DATヘテロ欠損マウスおよびVMAT2ヘテロ欠損マウスでは、メタンフェタミン急性投与後の運動増加が野生型マウスより少ないが、DATおよびVMAT2両方の発現が低下したマウスではメタンフェタミン急性投与による運動量増加はDATヘテロ欠損マウスとほぼ等しかったことから、メタンフェタミン投与による急性運動量増加効果にはVMAT2よりもDATの発現変化が大きな影響力を持っている可能性が報告されている<ref name=ref2><pubmed>17377774</pubmed></ref>。 ラットにメタンフェタミンを反復投与すると常同行動の発現潜時が短縮し、急性単回投与で起こる量よりも少ない量で常同行動が起こるようになることが知られており、この過敏反応性は行動感作(逆耐性現象)と呼ばれている。DATヘテロ欠損マウスでは、逆耐性現象の発展が抑制され形成も遅延した。VMAT2ヘテロ欠損マウスにおいても逆耐性現象の形成が遅延したが、発展は野生型と同様であった。DATおよびVMAT2両方の発現が低下したマウスでは、メタンフェタミン反復投与に対して運動量、逆耐性現象の発展・形成はDATヘテロ欠損マウスと差がなく、メタンフェタミン逆耐性現象の形成にはVMAT2の発現低下よりもDATの発現低下がより大きな影響を与えることが示唆されている<ref name=ref2/>。  


[[Image:Fig2meth.png|RTENOTITLE]]<br> <br>  
[[Image:Fig2meth.png|RTENOTITLE]]<br> <br>  
9

回編集