「シナプス後肥厚」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
5行目: 5行目:
<br>  
<br>  


電子顕微鏡像


 XXXXは、シナプスを電子顕微鏡で観察する事で、シナプスの直下の膜が他の部分に比べて電子密度が高い事を見いだした13357542。Akertら(1969)、Bloomら(1970)はこの構造をpostsynaptic density(PSD)と名付けた。その後、GrayらはPSDがシナプスの後部にのみ認められるシナプス(Gray I型シナプス)に加え、シナプス前部にも認められるシナプス(Gray II型シナプス)が有ることを見いだした.I型シナプスは円形のシナプス顆粒を持つのに対し、II型は楕円形のシナプス顆粒を持つ。現在では、I型シナプスが、グルタミン酸性興奮性シナプス、II型シナプスがGABA性抑制性シナプスであるとされており、電子顕微鏡的に観察されたシナプスの機能を推定する手がかりとなっている。  
== 電子顕微鏡像  ==
 
 XXXXは、シナプスを電子顕微鏡で観察する事で、シナプスの直下の膜が他の部分に比べて電子密度が高い事を見いだした<ref><pubmed>13357542</pubmed></ref>。Akertら(1969)、Bloomら(1970)はこの構造をpostsynaptic density(PSD)と名付けた。その後、GrayらはPSDがシナプスの後部にのみ認められるシナプス(Gray I型シナプス)に加え、シナプス前部にも認められるシナプス(Gray II型シナプス)が有ることを見いだした.I型シナプスは円形のシナプス顆粒を持つのに対し、II型は楕円形のシナプス顆粒を持つ。現在では、I型シナプスが、グルタミン酸性興奮性シナプス、II型シナプスがGABA性抑制性シナプスであるとされており、電子顕微鏡的に観察されたシナプスの機能を推定する手がかりとなっている。  


 Harrisらは連続切片を電子顕微鏡で観察し、海馬CA1錐体細胞の場合では、PSDの大きさは平均直径XXXX nm、厚さXXXX nmであるとした。また、場合によっては単なる円盤状ではなく、馬蹄形をしていることを見いだした。そのようなPSDは一般に大きなシナプスに認められるが、馬蹄形となる成因と生理学的意義はよく判っていない。しかし、一般にPSDが大きなシナプスは、シナプス前終末も大きく、ドックしているシナプス顆粒の数も多いため、より効率の良いシナプス伝達に関与していると思われる。  
 Harrisらは連続切片を電子顕微鏡で観察し、海馬CA1錐体細胞の場合では、PSDの大きさは平均直径XXXX nm、厚さXXXX nmであるとした。また、場合によっては単なる円盤状ではなく、馬蹄形をしていることを見いだした。そのようなPSDは一般に大きなシナプスに認められるが、馬蹄形となる成因と生理学的意義はよく判っていない。しかし、一般にPSDが大きなシナプスは、シナプス前終末も大きく、ドックしているシナプス顆粒の数も多いため、より効率の良いシナプス伝達に関与していると思われる。  


 ReeseらはPSDを電子顕微鏡断層撮影で観察し、PSD中に様々な形状の蛋白質粒子を見いだし分類した上、それぞれを既知のPSD分子に分類しているが、実際にはその主張を確認することは難しい。
 ReeseらはPSDを電子顕微鏡断層撮影で観察し、PSD中に様々な形状の蛋白質粒子を見いだし分類した上、それぞれを既知のPSD分子種に分類しているが、実際にはその主張を確認することは難しい。


== 生化学的な同定  ==
== 生化学的な同定  ==
18行目: 19行目:


== 構成蛋白質  ==
== 構成蛋白質  ==
 
{| | style="float:right" width="200" border="1" cellpadding="1" cellspacing="1"
 PSDを生化学的に単離することにより、PSDを構成する分子を同定することが可能となった。
|+ align=bottom|'''1個のPSDあたりに存在する蛋白質数'''<br>* SAP97、SAP102、PSD-93を含めたMAGUKs全体
 
 Pengらは、質量分析系を用い、数百種に及ぶ分子を同定している。その構成要素はシナプ伝達に関与する分子(受容体など)のほか、細胞内情報伝達分子(蛋白質リン酸化酵素、小分子GTP結合蛋白質など)、細胞骨格系分子(アクチン、スペクトリンなど)、足場蛋白質(PSD-95、Shank、Homerなど)、細胞接着分子(カドヘリン、ニューロリギンなど)が見いだされている。定量的な解析もなされ、major PSD proteinとしてかねてから知られていたCaMKIIが最も多く、次いでアクチンなど細胞骨格系の蛋白質が多い。
 
 彼らはまた、一個のPSDの分子量、そして、その要素の構成比から、一個のPSDの中にある分子の数を推定した。それによると、表のように、多い蛋白質で数百個の単位で存在することが判った。
 
{| width="200" border="1" cellpadding="1" cellspacing="1"
|-
|-
! scope="col" |  
! scope="col" |  
! scope="col" | Shengら
! scope="col" style="white-space:nowrap"| Shengら
! scope="col" | Sugiyamaら
! scope="col" style="white-space:nowrap"| Sugiyamaら
|-
|-
! scope="row" | AKAP79/150
! scope="row" | AKAP79/150
61行目: 56行目:
! scope="row" | PSD-95
! scope="row" | PSD-95
| 300
| 300
| 273*  
| 273*
|-
|-
! scope="row" | SAP97
! scope="row" | SAP97
| 10
| 10
| N.D.
| *
|-
|-
! scope="row" | SAPAP1-4/GKAP
! scope="row" | SAPAP1-4/GKAP
74行目: 69行目:
| 150
| 150
| 310
| 310
|-
|-
|}
|}
 PSDを生化学的に単離することにより、PSDを構成する分子を同定することが可能となった。
 Pengらは、質量分析系を用い、数百種に及ぶ分子を同定している。その構成要素はシナプ伝達に関与する分子(受容体など)のほか、細胞内情報伝達分子(蛋白質リン酸化酵素、小分子GTP結合蛋白質など)、細胞骨格系分子(アクチン、スペクトリンなど)、足場蛋白質(PSD-95、Shank、Homerなど)、細胞接着分子(カドヘリン、ニューロリギンなど)が見いだされている。定量的な解析もなされ、major PSD proteinとしてかねてから知られていたCaMKIIが最も多く、次いでアクチンなど細胞骨格系の蛋白質が多い。
 彼らはまた、一個のPSDの分子量、そして、その要素の構成比から、一個のPSDの中にある分子の数を推定した。それによると、表のように、多い蛋白質で数百個の単位で存在することが判った。 この数値は、杉山らがGFP融合蛋白質、免疫染色と蛍光標準ビーズを組み合わせた実験から得られた数字と驚くほど一致している。また、電気生理学的な雑音解析によっても一つのシナプスに存在する受容体数は数十から数百個であり、妥当な数字である。
 CaMKIIが桁違いに多いが、これはサンプル調整時の虚血によりPSDに移行することが知られており、それによる影響で過大に計量されている可能性があるが、それでもなお最も多い蛋白質の一つであることには間違えがない。その他のシグナル伝達分子に比べ、これは数十倍以上多く、これはCaMKIIが単にシグナル伝達分子であるだけではなく、PSDに於ける構造因子であることも示唆する。実際に岡本らはCaMKIIβがアクチンを束化する活性があることを見いだしている。
 これらのPSD分子は、蛋白質ドメイン間相互作用により、お互い結合し合っている。どの蛋白質が、PSDの最も中心に存在するかは判っていないが、一つの候補としてHomerとShankがある。この両者を精製し、混合することにより、PSDと同様な、網目状構造が再構築できるのに加え、そこにアダプター蛋白質であるGKAPを加えると組み込まれる。GKAPはさらにPSD-95を介しシナプス膜表面のグルタミン酸受容体に結合するので、ShankとHomerを基盤としてその他の蛋白質が次々に結合していくことで、PSDが形成されている可能性がある。実際にPSDとShankをニューロンに過剰発現することによりPSDが大きくなることが知られている。
 免疫電子顕微鏡による観察からは、様々なPSD蛋白質が膜直下から鉛直方向に層構造を作っていること、また、シナプス中心から水平方向に周辺部に向かっても蛋白質それぞれの分布をしていることが知られている。


<br>  
<br>