「シナプス後肥厚」の版間の差分

編集の要約なし
編集の要約なし
3行目: 3行目:
 シナプス後肥厚とは[[シナプス]]膜直下、細胞質側に存在する多数の[[蛋白質]]の複合体である。当初、[[電子顕微鏡]]によるシナプスの観察から、シナプス直下のみ電子線を通しにくく、細胞膜が肥厚してみれるからこのように名付けられた。シナプス膜直下に有ることから、シナプスの構造や機能に密接な関わりがあることが推定され、多くの研究がなされてきた。[[wikipedea:ja:生化学|生化学]]的に単離する事も可能で、シナプスの構造蛋白質、調節蛋白質など数百種類に及ぶ分子を含む事が判っている。  
 シナプス後肥厚とは[[シナプス]]膜直下、細胞質側に存在する多数の[[蛋白質]]の複合体である。当初、[[電子顕微鏡]]によるシナプスの観察から、シナプス直下のみ電子線を通しにくく、細胞膜が肥厚してみれるからこのように名付けられた。シナプス膜直下に有ることから、シナプスの構造や機能に密接な関わりがあることが推定され、多くの研究がなされてきた。[[wikipedea:ja:生化学|生化学]]的に単離する事も可能で、シナプスの構造蛋白質、調節蛋白質など数百種類に及ぶ分子を含む事が判っている。  
[[Image:PSD_3D_reconstruction.jpg|thumb|right|'''樹状突起(D)、樹状突起棘とPSD(赤)の立体再構築'''<br>T - 細型棘、 M - 茸状棘と穿孔シナプス(ラット、海馬)SpacekとHarrisによる。許可を得て転載。]]
[[Image:PSD_3D_reconstruction.jpg|thumb|right|'''樹状突起(D)、樹状突起棘とPSD(赤)の立体再構築'''<br>T - 細型棘、 M - 茸状棘と穿孔シナプス(ラット、海馬)SpacekとHarrisによる。許可を得て転載。]]
[[ファイル:PSD EM.png|thumb|right|'''電子顕微鏡による精製したPSD画像'''<br>スケールバー:100 nm。LismanとReeseによる。]]
[[ファイル:PSD EM.png|thumb|right|'''電子顕微鏡による精製したPSD画像'''<br>スケールバー:100 nm。LismanとReeseによる<ref name=petersen_j_neurosci><pubmed>14657186</pubmed></ref>。]]
== 電子顕微鏡像  ==
== 電子顕微鏡像  ==
 Palayは、シナプスを電子顕微鏡で観察する事で、シナプスの直下の膜が他の部分に比べて電子密度が高い事に気づいた<ref><pubmed>13357542</pubmed></ref>。その後、この構造はAkertらによりpostsynaptic density(PSD)と名付けられた<ref><pubmed>4186645</pubmed></ref>。シナプスの膜直下に有ることから、シナプスの構造や機能に密接な関わりがあることが容易に推定され、多くの研究がなされてきた。  
 Palayは、シナプスを電子顕微鏡で観察する事で、シナプスの直下の膜が他の部分に比べて電子密度が高い事に気づいた<ref><pubmed>13357542</pubmed></ref>。その後、この構造はAkertらによりpostsynaptic density(PSD)と名付けられた<ref><pubmed>4186645</pubmed></ref>。シナプスの膜直下に有ることから、シナプスの構造や機能に密接な関わりがあることが容易に推定され、多くの研究がなされてきた。  
14行目: 14行目:


== 生化学的性質  ==
== 生化学的性質  ==
 de RobertisらはPSDが[[wikipedia:ja:界面活性剤|界面活性剤]]に耐性があることを利用し、PSDを生化学的に単離することに成功した<ref><pubmed>4292059</pubmed></ref>。今日では、Siekevitzらによる界面活性剤に[[wikipedia:Sucrose_gradient_centrifugation|非連続蔗糖密度勾配遠心法]]を組み合わせた方法がよく用いられている<ref name=Carlin_J_Cell_Biol><pubmed>7410481</pubmed></ref>。単離したPSDの電子顕微鏡像は組織中のPSDと大きさや形状がよく似ており、直径が平均360 nm(面積で0.1 µm<sup>2</sup>)、分子量が1.10±0.36 GDaであった<ref><pubmed>16061821</pubmed></ref>。走査型電子顕微鏡観察では、不定形の網目状の構造が認められおり、その構造がPSDを形作る構成基盤である可能性がある<ref><pubmed>14657186</pubmed></ref>。  
 de RobertisらはPSDが[[wikipedia:ja:界面活性剤|界面活性剤]]に耐性があることを利用し、PSDを生化学的に単離することに成功した<ref><pubmed>4292059</pubmed></ref>。今日では、Siekevitzらによる界面活性剤に[[wikipedia:Sucrose_gradient_centrifugation|非連続蔗糖密度勾配遠心法]]を組み合わせた方法がよく用いられている<ref name=Carlin_J_Cell_Biol><pubmed>7410481</pubmed></ref>。単離したPSDの電子顕微鏡像は組織中のPSDと大きさや形状がよく似ており、直径が平均360 nm(面積で0.1 µm<sup>2</sup>)、分子量が1.10±0.36 GDaであった<ref><pubmed>16061821</pubmed></ref>。走査型電子顕微鏡観察では、不定形の網目状の構造が認められおり、その構造がPSDを形作る構成基盤である可能性がある<ref name=petersen_j_neurosci><pubmed>14657186</pubmed></ref>。  


 生化学的にPSDを単離する事が可能になった事により、それを構成する分子を同定することも可能となった。 順により強い界面活性剤処理を行うことにより、PSD I、II、IIIとしてPSDに強固に結合している分子を分別していくことも可能である。 ただし、標品には通常シナプス後部にはあまり存在しない分子(例えば[[塩基性ミエリン蛋白質]])も混入することも知られており、取れてきた標品の中に含まれている分子が本当にPSD由来であるかは、別に[[免疫染色]]などで確認する必要が有る。  
 生化学的にPSDを単離する事が可能になった事により、それを構成する分子を同定することも可能となった。 順により強い界面活性剤処理を行うことにより、PSD I、II、IIIとしてPSDに強固に結合している分子を分別していくことも可能である。 ただし、標品には通常シナプス後部にはあまり存在しない分子(例えば[[塩基性ミエリン蛋白質]])も混入することも知られており、取れてきた標品の中に含まれている分子が本当にPSD由来であるかは、別に[[免疫染色]]などで確認する必要が有る。