「相互相関解析」の版間の差分

編集の要約なし
編集の要約なし
1行目: 1行目:
英語名:cross-correlation analysis
英語名:cross-correlation analysis


 相互相関解析とは、二つの時系列信号の類似度を、[[wikipedia:ja:相互相関関数|相互相関関数]]を用いて評価する方法である。神経科学の分野においては、主に細胞間の機能的結合を推定する目的で、同時計測した二つの[[神経細胞]]の活動に対して相互相関解析が行われる。
 相互相関解析とは、二つの時系列信号の類似度を評価することで、信号間の関係(同期している、片方が遅れている、無関係である等)を検討する方法である。類似度の評価に[[wikipedia:ja:相互相関関数|相互相関関数]]を用いることから、その名がついた。神経科学の分野においては、主に細胞間の機能的結合を推定する目的で、同時計測した二つの[[神経細胞]]の活動に対して相互相関解析が行われる。


==解析方法==
==解析方法==
7行目: 7行目:
 相互相関関数の定義は学問分野、研究者によって異なる。ここでは神経科学の分野でしばしば用いられる定義について述べる。
 相互相関関数の定義は学問分野、研究者によって異なる。ここでは神経科学の分野でしばしば用いられる定義について述べる。


[[Image:CCG_Fig1.png|thumb|350px|'''図1 相互相関関数の例'''<br>二つの仮想的な細胞のスパイク活動から計算した相互相関関数。平均10ヘルツで活動電位を発射する二つの細胞から5分間にわたり同時に活動を計測する実験をシミュレートし、相互相関関数を求めた。あるビンにおいて細胞が発火している状態を <math>X(t) = 1</math> で、発火していない状態を <math>X(t) = 0</math> で表し、計算を行った。'''A、'''二つの細胞が同期して活動する傾向がある場合、相互相関関数は時間差0にピークを持つ。'''B、'''2つの細胞の活動の間に何の関係性もない場合、相互相関関数は平坦となる]]  
[[Image:CCG_Fig1.png|thumb|350px|'''図1.相互相関関数の例'''<br>二つの仮想的な細胞のスパイク活動から計算した相互相関関数。平均10ヘルツで活動電位を発射する二つの細胞から5分間にわたり同時に活動を計測する実験をシミュレートし、相互相関関数を求めた。あるビンにおいて細胞が発火している状態を <math>X(t) = 1</math> で、発火していない状態を <math>X(t) = 0</math> で表し、計算を行った。'''A、'''二つの細胞が同期して活動する傾向がある場合、相互相関関数は時間差0にピークを持つ。'''B、'''2つの細胞の活動の間に何の関係性もない場合、相互相関関数は平坦となる]]  


 ある二つの神経細胞の活動(例えば[[活動電位]]の発生タイミング)を同時に計測したとする。計測期間を <math> T </math> 個のビンに区切り、 <math>t</math> 番目のビンにおけるある細胞の活動を <math>X(t)</math> で、もう一つの細胞の活動を <math>Y(t)</math> で表す。このとき <math>X(t)</math> と <math>Y(t)</math> の相互相関関数(相互相関ヒストグラム) <math>C_{XY}(\tau)</math> は、次のように定義される。
 ある二つの神経細胞の活動(例えば[[活動電位]]の発生タイミング)を同時に計測したとする。計測期間を <math> T </math> 個のビンに区切り、 <math>t</math> 番目のビンにおけるある細胞の活動を <math>X(t)</math> で、もう一つの細胞の活動を <math>Y(t)</math> で表す。このとき <math>X(t)</math> と <math>Y(t)</math> の相互相関関数(相互相関ヒストグラム) <math>C_{XY}(\tau)</math> は、次のように定義される。
:<math>C_{XY}(\tau) = \sum_{t = 1}^{T} X(t)\ Y(t+\tau),</math>
:<math>C_{XY}(\tau) = \sum_{t = 1}^{T} X(t)\ Y(t+\tau),</math>


ここで <math>\tau</math> は <math> X </math> と <math> Y </math> の間の時間差(time-lag)を表す。相互相関関数は、細胞 <math> X </math> の活動と細胞 <math> Y </math> の活動との関係性を反映する(図1)。
ここで <math>\tau</math> は <math> X </math> と <math> Y </math> の間の時間差(time-lag)を表す。相互相関関数は、細胞 <math> X </math> の活動と細胞 <math> Y </math> の活動との時間的関係性を反映する(図1)。


[[Image:CCG_Fig2.png|thumb|350px|'''図2 相互共分散関数の例'''<br>二つの仮想的な細胞のスパイク活動から計算した相互共分散関数(青線)。相互相関関数(黒線)には、細胞活動間の共分散(相関)に由来する成分と、平均発火率の変化に由来する成分が含まれる。細胞活動が独立である場合に期待される相互相関関数(赤線)を差し引くことで、共分散に由来する成分を抽出することができる。この例では、二つの細胞の活動の間に正の相関がある。]]  
[[Image:CCG_Fig2.png|thumb|350px|'''図2.相互共分散関数の例'''<br>二つの仮想的な細胞のスパイク活動から計算した相互共分散関数(青線)。相互相関関数(黒線)には、細胞活動間の共分散(相関)に由来する成分と、平均発火率の変化に由来する成分が含まれる。細胞活動が独立である場合に期待される相互相関関数(赤線)を差し引くことで、共分散に由来する成分を抽出することができる。この例では、二つの細胞の活動の間に正の相関がある。]]  


 神経活動はしばしば[[wikipedia:ja:確率過程|確率過程]]としてモデル化される。この場合、相互相関関数の値は複数の統計量(細胞活動の[[wikipedia:ja:平均|平均]]や[[wikipedia:ja:共分散|共分散]])を反映する。例えば、二つの細胞の活動が独立、つまり共分散が0であっても、両細胞の活動の平均が時間的に同じように変化すると、相互相関関数は時間差0で最大となる場合がある。実験データから計算した相互相関関数と、二つの細胞の活動が独立である場合に期待される相互相関関数([[wikipedia:ja:帰無仮説|帰無仮説]])の差を取ることで、(いくつかの仮定のもとに)二つの細胞の活動が独立かどうかを統計的に検討することができる<ref name=perkel><pubmed> 4292792 </pubmed></ref>。この差は[[wikipedia:ja:相互共分散関数|相互共分散関数]] <math>Cov_{XY}(\tau)</math> と呼ばれる。
 神経活動はしばしば[[wikipedia:ja:確率過程|確率過程]]としてモデル化される。この場合、相互相関関数の値は複数の統計量(細胞活動の[[wikipedia:ja:平均|平均]]や[[wikipedia:ja:共分散|共分散]])を反映する。例えば、二つの細胞の活動が独立、つまり共分散が0であっても、両細胞の活動の平均が時間的に同じように変化すると、相互相関関数は時間差0で最大となる場合がある。実験データから計算した相互相関関数と、二つの細胞の活動が独立である場合に期待される相互相関関数([[wikipedia:ja:帰無仮説|帰無仮説]])の差を取ることで、(いくつかの仮定のもとに)二つの細胞の活動が独立かどうかを統計的に検討することができる<ref name=perkel><pubmed> 4292792 </pubmed></ref>。この差は[[wikipedia:ja:相互共分散関数|相互共分散関数]] <math>Cov_{XY}(\tau)</math> と呼ばれる。
27行目: 27行目:
==解釈==
==解釈==


 相互共分散関数の形状から、神経回路の機能的結合関係を推定することができると考えられている<ref name=perkel /><ref name=ostojic><pubmed> 19692598 </pubmed></ref>。例えば、ある二つの細胞の活動から計算した相互共分散関数が時間差0に幅の狭い大きなピークを持つ場合(図2)、二つの細胞は共通の興奮性入力を受け取っていると考えられる<ref><pubmed> 1000297 </pubmed></ref><ref name=toyama><pubmed> 6267211 </pubmed></ref>。相互共分散関数のピークの位置、幅を分析することにより、細胞間の興奮性結合や抑制性結合を推定することも可能である<ref name=perkel /><ref name=toyama /><ref><pubmed> 14711977 </pubmed></ref>。細胞 <math>X</math> から細胞 <math>Y</math> への興奮性結合の強度を定量化するために、細胞 <math>X</math> のスパイクの後どのくらいの割合で細胞 <math>Y</math> がスパイクを発射したか(efficacy)や、細胞 <math>Y</math> が発射したスパイクのうちどのくらいの割合が細胞 <math>X</math> のスパイクの後に発生したか(contribution)といった指標が用いられる<ref><pubmed> 5028229 </pubmed></ref>。
 相互共分散関数の形状から、神経回路の機能的結合関係を推定することができると考えられている<ref name=perkel /><ref name=ostojic><pubmed> 19692598 </pubmed></ref>。例えば、ある二つの細胞の活動から計算した相互共分散関数が時間差0に幅の狭い大きなピークを持つ場合(図2)、二つの細胞は共通の興奮性入力を受け取っていると考えられる<ref><pubmed> 1000297 </pubmed></ref><ref name=toyama><pubmed> 6267211 </pubmed></ref>。相互共分散関数のピークの位置、幅を分析することにより、細胞間の興奮性結合や抑制性結合を推定することも可能である<ref name=perkel /><ref name=toyama /><ref><pubmed> 14711977 </pubmed></ref>。細胞 <math>X</math> から細胞 <math>Y</math> への興奮性結合の強度を定量化するために、細胞 <math>X</math> のスパイクの後どのくらいの割合で細胞 <math>Y</math> がスパイクを発射したか(efficacy)や、細胞 <math>Y</math> が発射したスパイクのうちどのくらいの割合が細胞 <math>X</math> のスパイクの後に発生したか(contribution)といった指標が用いられる<ref><pubmed> 5028229 </pubmed></ref>。


 相互相関解析は機能的結合を間接的に推定する方法であるため、結果の解釈には曖昧性が残る可能性が指摘されている<ref name=perkel /><ref name=ostojic /><ref name=brody><pubmed> 10490937 </pubmed></ref>。例えばシミュレーションによって、異なるメカニズムで働く神経回路から同じようなピーク位置、幅を持つ相互相関関数が得られる場合があることが示されている<ref name=brody />。
 相互相関解析は機能的結合を間接的に推定する方法であるため、結果の解釈には曖昧性が残る可能性が指摘されている<ref name=perkel /><ref name=ostojic /><ref name=brody><pubmed> 10490937 </pubmed></ref>。例えばシミュレーションによって、異なるメカニズムで働く神経回路から同じようなピーク位置、幅を持つ相互相関関数が得られる場合があることが示されている<ref name=brody />。