9,444
回編集
細編集の要約なし |
細編集の要約なし |
||
1行目: | 1行目: | ||
英:medial geniculate body, medial geniculate nucleus (略語: MG, MGB) | 英:medial geniculate body, medial geniculate nucleus (略語: MG, MGB)<br> | ||
羅:corpus geniculatum mediale, nucleus geniculatus medialis | |||
==概要== | ==概要== | ||
内側膝状体は[[視床]]に属する神経核群であり、[[中脳]][[下丘]]と[[大脳皮質]][[聴覚野]]の間に位置する[[聴覚]]伝導路の中継核である。上行系は下丘から、下降系は大脳皮質聴覚野から入力を受ける。大脳皮質聴覚野へ送る聴覚情報の選別がMGの主な機能であると考えられている(Paxinos, 2004)。MGは[[腹側核]](ventral division of the medial geniculate body, MGv)、[[背側核]](dorsal division of the medial geniculate body, MGd)、[[内側核]](medial division of the medial geniculate body, MGm)の3つの亜核が主な構成亜核である。MGvは主に[[蝸牛神経核]]腹側核から始まるlemniscal系の下丘中心核から聴覚情報を受け、MGd, MGmは下丘だけでなく他の視床核や[[脊髄]]などのnon-lemniscal系からmultimodalな修飾的な情報を得ていると考えられる。MG内の亜領域同士の結合や、左右MG同士の結合は存在しないとされている(Paxinos, 2004)。 | |||
==MGを構成する亜核について== | ==MGを構成する亜核について== | ||
===領域の区分=== | ===領域の区分=== | ||
MGv, MGd, | MGv, MGd, MGmの3つの領域はカルビンジン(calbindin)やカルレチニン(calretinin)などのカルシウム結合タンパク質や非リン酸化型[[ニューロフィラメント]](nonphosphorylated neurofilament; NNF)の発現の有無によって生化学的に区分けすることが可能である。MGvはカルビンジンとカルレチニンの発現が無く、MGdとMGmは非常に強い発現を示す(図1)<ref><pubmed> 19643174 </pubmed></ref>。一方NNFの発現は、MGvとMGmで強く、MGdでは殆どない(Paxinos et al. 2001; 2009)。また、パルブアルブミン(parvalbumin)の発現はMGvで強い<ref><pubmed> 16344161 </pubmed></ref>。[[ファイル:Hiroakitsukano_Fig1.jpg|thumb|400px|'''図1 マウスMGの生化学的区分けの例''' (A)前額断切片calretinin染色像、(B)calbindin染色像、(C)マージ像。出版元より許可を得て引用。<ref><pubmed> 19643174 </pubmed></ref>]] | ||
===MGv=== | ===MGv=== | ||
MGvは3つの亜核の中で、聴覚情報処理の中心的な役割を担っている領域である。MGvを構成する主なニューロンは[[tufted neuron]]であり、30%弱が[[stellate cell]]である(図2)。MGvは周囲をthe marginal zone (MZ)に囲まれており、さらに[[pars lateralis]], [[pars ovoidea]]の2つに区別される(図2)。pars lateralisはMGvの代表的部位で、音の高さに沿った[[トノトピー]]が層状に構成されている([[Laminae構造]])。Laminae構造はラットでは弱いがネコでは非常にはっきりとした構造となる<ref><pubmed> 10320097 </pubmed></ref>。Tufted neuronの[[樹状突起]]も層構造に沿って配置されている。Pars ovoideaではtufted neuronの樹状突起と[[軸索]]は渦で巻いた様な形態をとっている(図2)。[[ファイル:Hiroakitsukano_Fig2.jpg|thumb|350px|'''図2 MGを構成するニューロン''' Ov: pars ovoidea, V: pars lateralis, MZ: the marginal zone。pars lateralisのニューロンの形態がLaminae構造を作っている。出版元より許可を得て引用。<ref><pubmed> 10320097 </pubmed></ref>]] | |||
MGvが主に受ける軸索は同側下丘の[[中心核]](central nucleus of the inferior colliculus, ICC)のニューロンからであり、興奮性入力は[[グルタミン酸]]作動性で[[NMDA受容体|NMDA]]/[[AMPA受容体]]に作用する。樹状突起には[[代謝型グルタミン酸受容体]]も存在する<ref><pubmed> 10444669 </pubmed></ref>。MGvへの抑制性入力は[[GABA]]作動性であり、[[GABAA受容体|GABA<sub>A</sub>]]/[[GABAB受容体|GABA<sub>B</sub>受容体]]に作用する<ref><pubmed> 10322042 </pubmed></ref>。MGvから大脳皮質へは、Core領域([[前聴覚野]](anterior auditory field, AAF)、[[一次聴覚野]](primary auditory cortex, AI)、[[wikipedia:ja:ネコ|ネコ]]や[[wikipedia:ja:イヌ|イヌ]]などの[[posterior auditory field]] (P))のIII/IV層にトノトピー構造をもって軸索を伸ばす。聴覚野からの下降性の直接入力は興奮性しかないが、[[視床網様核]](reticular thalamic nucleus, TRN)を経由してMGを抑制する系が存在する(図3)。 | |||
MGvは個々のニューロンの周波数チューニングが比較的鋭いが、下丘で見られる様な非常に鋭い周波数チューニングを持つニューロンはあまり見られない。MGvニューロンの潜時は非常に短い。MGvは[[pars ventrolateralis]]においてはっきりしたトノトピー構造を持つ。即ち、低周波数音に最適周波数を持つニューロンから高周波数音に最適周波数を持つニューロンまでが一方向に並んでいる。しかし種によってこの構造には差異がある。[[wikipedia:ja:ラット|ラット]]や[[wikipedia:ja:ウサギ|ウサギ]]では、低周波数に良く応ずるニューロンは背側部に、高周波数に応ずるニューロンは腹側部に位置する<ref><pubmed> 22405210 </pubmed></ref><ref><pubmed> 16344161 </pubmed></ref>。ネコでは低周波数に応ずるニューロンは腹側部に、高周波数に応ずるニューロンは背側部に位置し逆転している<ref><pubmed> 3973661 </pubmed></ref>。Pars ovoideaは、ネコでは低周波数から高周波数まで応ずるが、ウサギでは低い周波数に選択的に応ずる領域であると考えられている(Paxinos, 2004)。 | |||
===MGd=== | ===MGd=== | ||
MGdの機能に関しては良く分かっていない。MGdは同側の[[dorsal cortex of IC]](DCIC),lateral cortex of IC(LCIC)からグルタミン酸ニューロン、GABAニューロンのどちらの投射も受けている<ref><pubmed> 20589100 </pubmed></ref>。MGdも視床網様核(TRN)から抑制性入力が存在する。視床からは[[suprageniculate nucleus]] (SG)、[[posterior intralaminar nucleus]] (PIN)、[[lateral region of the posterior nucleus]] (Pol)から投射を受けている。MGdは[[Belt領域]](Core領域を取り囲む領域群)の聴覚皮質III/IV層にトノトピー構造を持たずに投射している。さらに[[島皮質]]、[[扁桃体]]にも投射する(Paxinos, 2004)。MGdニューロンの周波数チューニングはMGvより2倍ほど広い。MGdは主にstellate cellから構成される。 | |||
===MGm=== | ===MGm=== | ||
MGmの大きな特徴は、幅広い領域から投射を受けていることである。MGmは同側下丘の全ての亜核から投射を受け、[[上オリーブ核群]]、[[腹外側毛体]]からも投射を受け聴覚情報の入力を受けている<ref><pubmed> 12486183 </pubmed></ref>。さらに脊髄、[[前庭核]]、[[上丘]]深層から聴覚以外の情報を受け取っている<ref><pubmed> 4132971 </pubmed></ref><ref><pubmed> 864027 </pubmed></ref>。また下降系経路として視床網様核や聴覚野から入力がある。MGmは聴覚野の全ての領域と[[体性感覚野]]にも軸索を伸ばしている。[[線条体]]や扁桃体にも投射している<ref><pubmed> 4086664 </pubmed></ref>。MGmニューロンの周波数チューニングはMGvより2倍ほど広い。MGmニューロンの多くは長い潜時を持つ。MGmニューロンはMGvニューロンよりも[[Na+-K+-ATPase]]の活動性が強いことが知られている<ref><pubmed> 9263918 </pubmed></ref>。MGmはネコではトノトピー構造があることが示唆されている<ref><pubmed> 3973661 </pubmed></ref>。MGmは主にmagnocellular cellから構成される。 | |||
== | ==MGの抑制性ニューロン== | ||
MGの[[抑制性ニューロン]]の割合は種に依って大きく異なる。[[wikipedia:ja:コウモリ|コウモリ]]やラットではGABAニューロンは全体の1%程しか存在しない。よってこれらの動物では視床網様核(TRN)を介する抑制が重要となる。また下丘からMGに抑制性の投射が送られる<ref><pubmed> 8755593 </pubmed></ref>。GABAニューロンの割合が著しく少ないラットでは、下丘による抑制の割合が他の種より多いことが判っており、実に下丘ニューロンの40%もがMGに抑制性軸索を送っている。ネコや[[wikipedia:ja:サル|サル]]ではMGニューロンに占めるGABAニューロンの割合は30%に増える。GABAニューロンの割合がこれほど異なるのは、種によって大切な音の種類と複雑さが異なるためだと考えられている<ref><pubmed> 8610172 </pubmed></ref>。 | |||
==MGの機能== | ==MGの機能== | ||
現在知られている知見を持ってMGの担う聴覚情報処理機能を断定することは非常に難しい。しかし視床の一般的な特徴を俯瞰する時、MGの機能を推測することが可能である。[[ファイル:Hiroakitsukano_Fig3.jpg|thumb|200px|'''図3 ゲート機構図''' | 現在知られている知見を持ってMGの担う聴覚情報処理機能を断定することは非常に難しい。しかし視床の一般的な特徴を俯瞰する時、MGの機能を推測することが可能である。[[ファイル:Hiroakitsukano_Fig3.jpg|thumb|200px|'''図3 ゲート機構図''' 赤ニューロンは視床網様核の抑制性ニューロン。]] | ||
MGや聴覚野に至らずとも下丘までで基本的な聴覚情報処理はされていると考えられている(Paxinos, 2004)。一方、聴覚野は時間的な情報やハーモニーなど音の組合せ情報の処理・認知など高度な役割が与えられている<ref><pubmed> 18436653 </pubmed></ref><ref><pubmed> 16121182 </pubmed></ref>。MGはその間に位置し下丘と聴覚野を結び、聴覚野に送るべき情報を選別するゲートであると考えられる<ref><pubmed> 9464683 </pubmed></ref> | MGや聴覚野に至らずとも下丘までで基本的な聴覚情報処理はされていると考えられている(Paxinos, 2004)。一方、聴覚野は時間的な情報やハーモニーなど音の組合せ情報の処理・認知など高度な役割が与えられている<ref><pubmed> 18436653 </pubmed></ref><ref><pubmed> 16121182 </pubmed></ref>。MGはその間に位置し下丘と聴覚野を結び、聴覚野に送るべき情報を選別するゲートであると考えられる<ref><pubmed> 9464683 </pubmed></ref>(図3)。その指令塔の機能を有すると思われる視床網様核が[[腹側視床]]に存在している。視床網様核は視床を囲う様に位置する神経核で、その殆どがGABAニューロンで占められている神経核である。視床から皮質、皮質から視床に至る軸索はほぼ全て視床網様核に側枝を伸ばしている。視床網様核は聴覚野からのフィードバックを元にMGに抑制を与え、[[側方抑制]]などに貢献している(Paxinos, 2004)。さらにTRNは前頭葉からの情報を元にMGに抑制を与え、[[注意]]を向けた対象以外のことに抑制をかけるフィルター機能も有すると考えられている<ref><pubmed> 16837581 </pubmed></ref>。またTRNからMGへの抑制回路は[[視覚]]など他のモダリティによる聴覚抑制にも関与している<ref><pubmed> 22101990 </pubmed></ref>。詳しくは「[[視床ゲート機構]]」の項参照。 | ||
==関連項目== | ==関連項目== | ||
34行目: | 35行目: | ||
*[[聴覚野]] | *[[聴覚野]] | ||
*[[視床]] | *[[視床]] | ||
*[[ | *[[視床網様核]] | ||
*[[視床ゲート機構]] | |||
==参考文献== | ==参考文献== |