「シナプス後肥厚」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
1行目: 1行目:
[[ファイル:Spine EM.png|thumb|right|'''電子顕微鏡によるPSD画像'''<br>この例は穿孔PSDである。矢頭間:PSD、S:樹状突起棘、AT:軸索終止、a:星状膠細胞、矢印:小胞体、スケールバー:200 nm。ヒト大脳皮質。SpacekとHarrisによる。許可を得て転載。]]
[[ファイル:Spine EM.png|thumb|right|'''電子顕微鏡によるPSD画像'''<br>この例は穿孔PSDである。矢頭間:PSD、S:樹状突起棘、AT:軸索終止、a:星状膠細胞、矢印:小胞体、スケールバー:200 nm。ヒト大脳皮質。SpacekとHarrisによる。許可を得て転載。]]
英:postsynaptic density 英略称:PSD、独:postsynaptische Dichte 仏:densité post-synaptique<br>  
英:postsynaptic density 英略称:PSD、独:postsynaptische Dichte 仏:densité post-synaptique<br>  
 シナプス後肥厚(シナプス後肥厚部ともいう)とは[[シナプス]]膜直下、細胞質側に存在する多数の[[蛋白質]]の複合体である。当初、[[電子顕微鏡]]によるシナプスの観察から、シナプス直下のみ電子線を通しにくく、細胞膜が肥厚してみれるからこのように名付けられた。シナプス膜直下に有ることから、シナプスの構造や機能に密接な関わりがあることが推定され、多くの研究がなされてきた。[[wikipedea:ja:生化学|生化学]]的に単離する事も可能で、シナプスの構造蛋白質、調節蛋白質など数百種類に及ぶ分子を含む事が判っている。  
 シナプス後肥厚(シナプス後肥厚部ともいう)とは[[シナプス]]膜直下、細胞質側に存在する多数の[[蛋白質]]の複合体である。当初、[[電子顕微鏡]]によるシナプスの観察から、シナプス直下のみ電子線を通しにくく、細胞膜が肥厚してみれるからこのように名付けられた。シナプス膜直下に有ることから、シナプスの構造や機能に密接な関わりがあることが推定され、多くの研究がなされてきた。[[wikipedea:ja:生化学|生化学]]的に単離する事も可能で、シナプスの構造蛋白質、調節蛋白質など数百種類に及ぶ分子を含む事が判っている。  
[[Image:PSD_3D_reconstruction.jpg|thumb|right|'''樹状突起(D)、樹状突起棘とPSD(赤)の立体再構築'''<br>T - 細型棘、 M - 茸状棘と穿孔シナプス(ラット、海馬)SpacekとHarrisによる。許可を得て転載。]]
[[Image:PSD_3D_reconstruction.jpg|thumb|right|'''樹状突起(D)、樹状突起棘とPSD(赤)の立体再構築'''<br>T - 細型棘、 M - 茸状棘と穿孔シナプス(ラット、海馬)SpacekとHarrisによる。許可を得て転載。]]
17行目: 18行目:


 これにより、PSDを構成する分子を同定することも可能となった。 順により強い界面活性剤処理を行うことにより、PSD I、II、IIIとしてPSDに強固に結合している分子を分別していくことも可能である。 ただし、標品には通常シナプス後部にはあまり存在しない分子(例えば[[塩基性ミエリン蛋白質]])も混入することも知られており、取れてきた標品の中に含まれている分子が本当にPSD由来であるかは、別に[[免疫染色]]などで確認する必要が有る。  
 これにより、PSDを構成する分子を同定することも可能となった。 順により強い界面活性剤処理を行うことにより、PSD I、II、IIIとしてPSDに強固に結合している分子を分別していくことも可能である。 ただし、標品には通常シナプス後部にはあまり存在しない分子(例えば[[塩基性ミエリン蛋白質]])も混入することも知られており、取れてきた標品の中に含まれている分子が本当にPSD由来であるかは、別に[[免疫染色]]などで確認する必要が有る。  
[[ファイル:PSD_proteins2.png|thumb|right|'''PSD蛋白質'''<ref name=sheng_ann_rev_biochem><pubmed> 17243894 </pubmed></ref><ref name=peng_mol_cell_proteomics><pubmed>15020595</pubmed></ref>許可を得て転載。]]
 Kennedyらは、PSD分画に再現性よく多く認められる約45kDの蛋白質が、[[Ca2+/calmodulin依存性タンパク質キナーゼ|Ca<sup>2+</sup>/calmodulin依存性タンパク質キナーゼ]](CaMKII)&alpha;である事を見いだした<ref><pubmed> 6580651 </pubmed></ref>。この量は他の蛋白質と比べても多いが、CaMKIIはサンプル調整時の[[虚血]]によりPSDに移行することが知られており<ref><pubmed> 7931307 </pubmed></ref>、それによる影響で過大評価されている可能性がある。それでもなお最も多い蛋白質の一つであることには間違えがない。CaMKIIは他の情報伝達分子に比べ、数十倍以上多く、これはCaMKIIが単に情報伝達分子であるだけではなく、PSDに於ける構造因子であることも示唆する。実際に岡本らはCaMKIIβがアクチンを束化する活性があることを見いだしている<ref><pubmed> 17404223 </pubmed></ref>。
 また、Kennedyらは、PSD III分画に濃縮され、堅固にPSDを構成している蛋白質として、PSD-95を同定した<ref><pubmed> 1419001 </pubmed></ref>。PSD-95は後に、[[NMDA型グルタミン酸受容体]]のカルボキシル末端に結合し、NMDA型グルタミン酸受容体のシナプスへの局在を規定している蛋白質として再同定された<ref><pubmed> 7569905 </pubmed></ref>。その後の研究により、PSD-95は様々なシナプス蛋白に結合する事が示され、[[足場蛋白質]]の典型例として知られている。
 一方で、[[wikipedia:ja:ゲノム計画|ゲノム計画]]の完成、[[質量分析計]]技術の進歩により、PSDに存在する蛋白質を網羅的に解析する事も出来る様になった<ref name=peng_mol_cell_proteomics><pubmed>15020595</pubmed></ref><ref><pubmed> 15169875 </pubmed></ref><ref><pubmed> 15572359 </pubmed></ref>。その構成要素はシナプス伝達に関与する分子([[受容体]]など)のほか、細胞内[[情報伝達分子]]([[蛋白質リン酸化酵素]]、[[小分子GTP結合蛋白質]]など)、[[細胞骨格]]系分子([[アクチン]]、[[スペクトリン]]など)、足場蛋白質(PSD-95、[[Shank]]、[[Homer]]など)、[[細胞接着分子]]([[カドヘリン]]、[[ニューロリギン]]など)が見いだされている。


{| style="float:left" width="200" border="1" cellpadding="1" cellspacing="1"
{| class="wikitable" style="float:left; border: 1px solid darkgray;"
|
{| class="wikitable" style="border: 1px solid darkgray;" width="200" cellpadding="1" cellspacing="1";
|+ align=bottom |'''1個のPSDあたりに存在する蛋白質分子数'''<br>*PSD-95、[[SAP97]]、[[SAP102]]、[[PSD-93]]を含めた[[MAGUKs]]全体  
|+ align=bottom |'''1個のPSDあたりに存在する蛋白質分子数'''<br>*PSD-95、[[SAP97]]、[[SAP102]]、[[PSD-93]]を含めた[[MAGUKs]]全体  
|-
|-
76行目: 72行目:
| 310
| 310
|}
|}
|}
[[ファイル:PSD_proteins2.png|thumb|right|'''PSD蛋白質'''<ref name=sheng_ann_rev_biochem><pubmed> 17243894 </pubmed></ref><ref name=peng_mol_cell_proteomics><pubmed>15020595</pubmed></ref>許可を得て転載。]]
 Kennedyらは、PSD分画に再現性よく多く認められる約45kDの蛋白質が、[[Ca2+/calmodulin依存性タンパク質キナーゼ|Ca<sup>2+</sup>/calmodulin依存性タンパク質キナーゼ]](CaMKII)&alpha;である事を見いだした<ref><pubmed> 6580651 </pubmed></ref>。この量は他の蛋白質と比べても多いが、CaMKIIはサンプル調整時の[[虚血]]によりPSDに移行することが知られており<ref><pubmed> 7931307 </pubmed></ref>、それによる影響で過大評価されている可能性がある。それでもなお最も多い蛋白質の一つであることには間違えがない。CaMKIIは他の情報伝達分子に比べ、数十倍以上多く、これはCaMKIIが単に情報伝達分子であるだけではなく、PSDに於ける構造因子であることも示唆する。実際に岡本らはCaMKIIβがアクチンを束化する活性があることを見いだしている<ref><pubmed> 17404223 </pubmed></ref>。
 また、Kennedyらは、PSD III分画に濃縮され、堅固にPSDを構成している蛋白質として、PSD-95を同定した<ref><pubmed> 1419001 </pubmed></ref>。PSD-95は後に、[[NMDA型グルタミン酸受容体]]のカルボキシル末端に結合し、NMDA型グルタミン酸受容体のシナプスへの局在を規定している蛋白質として再同定された<ref><pubmed> 7569905 </pubmed></ref>。その後の研究により、PSD-95は様々なシナプス蛋白に結合する事が示され、[[足場蛋白質]]の典型例として知られている。
 一方で、[[wikipedia:ja:ゲノム計画|ゲノム計画]]の完成、[[質量分析計]]技術の進歩により、PSDに存在する蛋白質を網羅的に解析する事も出来る様になった<ref name=peng_mol_cell_proteomics><pubmed>15020595</pubmed></ref><ref><pubmed> 15169875 </pubmed></ref><ref><pubmed> 15572359 </pubmed></ref>。その構成要素はシナプス伝達に関与する分子([[受容体]]など)のほか、細胞内[[情報伝達分子]]([[蛋白質リン酸化酵素]]、[[小分子GTP結合蛋白質]]など)、[[細胞骨格]]系分子([[アクチン]]、[[スペクトリン]]など)、足場蛋白質(PSD-95、[[Shank]]、[[Homer]]など)、[[細胞接着分子]]([[カドヘリン]]、[[ニューロリギン]]など)が見いだされている。
 Shengらは一個のPSDの[[wikipedia:ja:分子量|分子量]]とその要素の構成比から、一個のPSDの中にある分子の数を推定した<ref name=sheng_ann_rev_biochem><pubmed> 17243894 </pubmed></ref><ref><pubmed>16507876</pubmed></ref>。それによると多い蛋白質で数百個の単位で存在することが判った。 この数値は、杉山らが独立に[[GFP]]融合蛋白質、[[免疫染色]]と[[蛍光]]標準ビーズを組み合わせた実験から得られた数字と驚くほど一致している<ref name=sugiyama_nature_method><pubmed> 16118638 </pubmed></ref>。また、電気生理学的解析によっても一つのシナプスに存在する受容体数は数十から数百個であり、妥当な数字である。  
 Shengらは一個のPSDの[[wikipedia:ja:分子量|分子量]]とその要素の構成比から、一個のPSDの中にある分子の数を推定した<ref name=sheng_ann_rev_biochem><pubmed> 17243894 </pubmed></ref><ref><pubmed>16507876</pubmed></ref>。それによると多い蛋白質で数百個の単位で存在することが判った。 この数値は、杉山らが独立に[[GFP]]融合蛋白質、[[免疫染色]]と[[蛍光]]標準ビーズを組み合わせた実験から得られた数字と驚くほど一致している<ref name=sugiyama_nature_method><pubmed> 16118638 </pubmed></ref>。また、電気生理学的解析によっても一つのシナプスに存在する受容体数は数十から数百個であり、妥当な数字である。  


91行目: 95行目:


==将来展望==
==将来展望==
 当初、PSDの観察に用いられてきた電子顕微鏡は、生組織に用いることが出来ないと言う大きな欠点が有った。一方で、光学顕微鏡は生組織を観察できるが、[[wikipedia:ja:分解能|分解能]]に限度が有り、PSDの詳しい構造はみることが出来ない。最近、[[超高解像度顕微鏡]]と呼ばれる技術が開発され、100 nm以下の分解能で構造を観察することが出来るようになりつつ有る。STED<ref><pubmed> 21889466</pubmed></ref>、STORM/PALM<ref><pubmed> 21144999</pubmed></ref>、structured illuminationなどの方法が有るが、それぞれに一長一短があり、厚みがあるサンプルを観察しにくい、光[[wikipedia:Photobleach|褪色]]が著しいなどの問題を抱えるが、将来的には生細胞でのPSD動態観察に応用可能であると期待される。
 当初、PSDの観察に用いられてきた電子顕微鏡は、生組織に用いることが出来ないと言う大きな欠点が有った。一方で、光学顕微鏡は生組織を観察できるが、[[wikipedia:ja:分解能|分解能]]に限度が有り、PSDの詳しい構造はみることが出来ない。最近、[[超高解像度顕微鏡]]と呼ばれる技術が開発され、100 nm以下の分解能で構造を観察することが出来るようになりつつ有る。[[wikipedia:STED microscopy|STED]]<ref><pubmed> 21889466</pubmed></ref>、[[wikipedia:Stochastic_optical_reconstruction_microscopy#Stochastic_optical_reconstruction_microscopy_.28STORM.29|STORM/PALM]]<ref><pubmed> 21144999</pubmed></ref>、structured illuminationなどの方法が有るが、それぞれに一長一短があり、厚みがあるサンプルを観察しにくい、光[[wikipedia:Photobleach|褪色]]が著しいなどの問題を抱えるが、将来的には生細胞でのPSD動態観察に応用可能であると期待される。


== 参考文献  ==
== 参考文献  ==