「細胞分化」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
15行目: 15行目:


=== アストロサイト分化制御  ===
=== アストロサイト分化制御  ===
 神経幹細胞からのアストロサイトへの分化誘導には白血病阻害因子(leukemia inhibitory factor&nbsp;; LIF)や毛様体神経栄養因子(ciliary neurotrophic factor)などのIL-6ファミリーとBMP2等のBMPファミリーに属するサイトカインが重要な役割を担っている(文献10、11)。IL-6ファミリーサイトカインは共通の受容体コンポーネントgp130のホモ2量体形成あるいはgp130とLIF受容体のヘテロ2量対形成を誘導する。この2量体形成により相互に隣接したJanusキナーゼ(JAK)が自己リン酸化することで活性化され、活性化されたJAKは受容体細胞内領域のチロシン残基をリン酸化する。リン酸化されたチロシン残基にはsignal transducer and activator of transcription 3(STAT3)が自身のSrc homology 2(SH2)ドメインを介して結合し、近接したJAKによりチロシンリン酸化を受け活性化される。活性化されたSTAT3はホモダイマーを形成後、核へ移行し標的遺伝子の発現を誘導する。BMPはtransforming growth factorβ(TGFβ)スーパーファミリーに属するサイトカインで、Ⅰ型およびⅡ型BMP受容体が2分子ずつ会合したヘテロ4量体を介して細胞内にシグナルを伝達する。BMP-2等のリガンドの結合によって活性化された受容体は転写因子Smad1、Smad5あるいはSmad8のセリン残基をリン酸化することによってそれらを活性化する。活性化されたSmad1/5/8はSmad4とヘテロオリゴマーを形成した後に核へ移行し、標的遺伝子の転写を誘導する。これら2つのサイトカインファミリーによるシグナル伝達経路の下流で活性化されるSTAT3とSmad1は転写共役因子p300を介して複合体を形成することでアストロサイト特異的遺伝子の相乗的な転写活性化を誘導する(文献12)。近年、レチノイン酸(RA)がアストロサイト分化誘導因子であるLIFと相乗的に働くことで、神経幹細胞のアストロサイト分化を促進することが見出された(文献13)。RAはヒストンアセチル化の亢進によるクロマチン構造の脱凝縮を誘導し、LIFによって活性化されたSTAT3のアストロサイト特異的遺伝子Glial fibrillary acidic protein (GFAP)プロモーターへの結合を増強させることにより、神経幹細胞のアストロサイト分化を促進する。<br>  神経幹細胞は胎生初期には自己複製のみを繰り返すが、胎生中期になるとニューロンへの分化能を獲得し、胎生後期以降はアストロサイトやオリゴデンドロサイトへの分化能を獲得することで多分化能をもった神経幹細胞として成熟する。このような発生段階依存的な神経幹細胞の分化制御はDNAのメチル化が重要な役割を果たしている。胎生期神経幹細胞は発生段階に応じてアストロサイト特異的遺伝子プロモーターが脱メチル化を受けることによりアストロサイト分化誘導性サイトカインに対する応答性を獲得し、胎生後期以降の神経幹細胞ではアストロサイトへの分化が可能となる(文献14)(図2)。また、プロニューラル遺伝子群の一つであるNuerogはニューロン分化がさかんな胎生中期に高発現しニューロン分化を促進する一方、アストロサイト分化を抑制することが報告されている(文献15)。NeurogはBMP刺激で活性化され形成されたSmad/p300複合体と会合して、LIFとBMP刺激によるSmad/p300/STAT3複合体形成を阻害することでアストロサイトへの分化を抑制する。  
[[Image:H-nakashima-fig-2.jpg|thumb|300px|<b>図2:DNA脱メチル化による神経幹細胞のアストロサイト分可能獲得機構</b><br />神経幹細胞は自己複製能を持つだけでなく、中枢神経系を構成する主要な細胞種であるニューロン、アストロサイト、オリゴデンドロサイトのいずれにも分化する多分化能を有している。神経幹細胞の運命決定はサイトカインなどの細胞外因子とエピジェネティックな制御に代表される細胞内在性プログラムによりコントロールされている。]]  
 
神経幹細胞からのアストロサイトへの分化誘導には白血病阻害因子(leukemia inhibitory factor&nbsp;; LIF)や毛様体神経栄養因子(ciliary neurotrophic factor)などのIL-6ファミリーとBMP2等のBMPファミリーに属するサイトカインが重要な役割を担っている(文献10、11)。IL-6ファミリーサイトカインは共通の受容体コンポーネントgp130のホモ2量体形成あるいはgp130とLIF受容体のヘテロ2量対形成を誘導する。この2量体形成により相互に隣接したJanusキナーゼ(JAK)が自己リン酸化することで活性化され、活性化されたJAKは受容体細胞内領域のチロシン残基をリン酸化する。リン酸化されたチロシン残基にはsignal transducer and activator of transcription 3(STAT3)が自身のSrc homology 2(SH2)ドメインを介して結合し、近接したJAKによりチロシンリン酸化を受け活性化される。活性化されたSTAT3はホモダイマーを形成後、核へ移行し標的遺伝子の発現を誘導する。BMPはtransforming growth factorβ(TGFβ)スーパーファミリーに属するサイトカインで、Ⅰ型およびⅡ型BMP受容体が2分子ずつ会合したヘテロ4量体を介して細胞内にシグナルを伝達する。BMP-2等のリガンドの結合によって活性化された受容体は転写因子Smad1、Smad5あるいはSmad8のセリン残基をリン酸化することによってそれらを活性化する。活性化されたSmad1/5/8はSmad4とヘテロオリゴマーを形成した後に核へ移行し、標的遺伝子の転写を誘導する。これら2つのサイトカインファミリーによるシグナル伝達経路の下流で活性化されるSTAT3とSmad1は転写共役因子p300を介して複合体を形成することでアストロサイト特異的遺伝子の相乗的な転写活性化を誘導する(文献12)。近年、レチノイン酸(RA)がアストロサイト分化誘導因子であるLIFと相乗的に働くことで、神経幹細胞のアストロサイト分化を促進することが見出された(文献13)。RAはヒストンアセチル化の亢進によるクロマチン構造の脱凝縮を誘導し、LIFによって活性化されたSTAT3のアストロサイト特異的遺伝子Glial fibrillary acidic protein (GFAP)プロモーターへの結合を増強させることにより、神経幹細胞のアストロサイト分化を促進する。<br>  神経幹細胞は胎生初期には自己複製のみを繰り返すが、胎生中期になるとニューロンへの分化能を獲得し、胎生後期以降はアストロサイトやオリゴデンドロサイトへの分化能を獲得することで多分化能をもった神経幹細胞として成熟する。このような発生段階依存的な神経幹細胞の分化制御はDNAのメチル化が重要な役割を果たしている。胎生期神経幹細胞は発生段階に応じてアストロサイト特異的遺伝子プロモーターが脱メチル化を受けることによりアストロサイト分化誘導性サイトカインに対する応答性を獲得し、胎生後期以降の神経幹細胞ではアストロサイトへの分化が可能となる(文献14)(図2)。また、プロニューラル遺伝子群の一つであるNuerogはニューロン分化がさかんな胎生中期に高発現しニューロン分化を促進する一方、アストロサイト分化を抑制することが報告されている(文献15)。NeurogはBMP刺激で活性化され形成されたSmad/p300複合体と会合して、LIFとBMP刺激によるSmad/p300/STAT3複合体形成を阻害することでアストロサイトへの分化を抑制する。  




170

回編集