「リアノジン受容体」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
3行目: 3行目:
英語名:Ryanodine receptor 英語略名:RyR  
英語名:Ryanodine receptor 英語略名:RyR  


 リアノジン受容体は細胞内[[カルシウム]]貯蔵部位である小胞体膜上に存在するカルシウムチャネルであり、その名は、植物[[wikipedia:ja:アルカロイド|アルカロイド]]である[[wikipedia:ja:リアノジン|リアノジン]]が結合することに由来する。小胞体からのカルシウム放出を担うことから、同じく小胞体膜上に存在するカルシウムチャネルである[[イノシトール1,4,5-三リン酸受容体]](inositol 1,4,5-trisphosphate receptor; IP<sub>3</sub>R)とともに、カルシウム放出チャネルとも呼ばれ、細胞内カルシウム濃度調節に関与する。RyRには三種類のサブタイプが存在し、それぞれ異なった分布を示すが、脳においては三種類全ての発現が見られる。また三種類のサブタイプ全てに対して遺伝子欠損マウスが作成されているが、1型RyR欠損マウスは出生致死、2型RyR欠損マウスは胎生致死を示す。3型RyR欠損マウスのみ生後も生存・成熟するため、その解析結果の報告が存在する。
 リアノジン受容体は細胞内[[カルシウム]]貯蔵部位である小胞体膜上に存在するカルシウムチャネルであり、その名は、植物[[wikipedia:ja:アルカロイド|アルカロイド]]である[[wikipedia:ja:リアノジン|リアノジン]]が結合することに由来する。小胞体からのカルシウム放出を担うことから、同じく小胞体膜上に存在するカルシウムチャネルである[[イノシトール1,4,5-三リン酸受容体]](inositol 1,4,5-trisphosphate receptor; IP<sub>3</sub>R)とともに、カルシウム放出チャネルとも呼ばれ、細胞内カルシウム濃度調節に関与する。RyRには三種類のサブタイプが存在し、それぞれ異なった分布を示すが、脳においては三種類全ての発現が見られる。また三種類のサブタイプ全てに対して遺伝子欠損マウスが作成されているが、1型RyR欠損マウスは出生致死、2型RyR欠損マウスは胎生致死を示す。3型RyR欠損マウスのみ生後も生存・成熟するため解析が可能であり、脳機能への関与についての報告が存在する。


== 歴史 ==
== 歴史 ==
34行目: 34行目:
 [http://mouse.brain-map.org/experiment/show/71325426 RyR3]は脳cDNAライブラリーからのクローニングにより存在が明らかになったが、脳以外にも平滑筋、骨格筋、一部の[[wikipedia:ja:上皮細胞|上皮細胞]]や[[wikipedia:ja:リンパ球|リンパ球]]培養細胞などにおいて低レベルの発現が見られる。海馬CA領域で高レベルの発現が見られる。海馬歯状回、線条体などでも比較的発現レベルが高い。
 [http://mouse.brain-map.org/experiment/show/71325426 RyR3]は脳cDNAライブラリーからのクローニングにより存在が明らかになったが、脳以外にも平滑筋、骨格筋、一部の[[wikipedia:ja:上皮細胞|上皮細胞]]や[[wikipedia:ja:リンパ球|リンパ球]]培養細胞などにおいて低レベルの発現が見られる。海馬CA領域で高レベルの発現が見られる。海馬歯状回、線条体などでも比較的発現レベルが高い。


尚、詳細については、Giannini et al. (1995) <ref name="ref6" /> を参考にされたい。
尚、各サブタイプの体内分布に関する詳細については、Giannini et al. (1995) <ref name="ref6" /> を参考にされたい。


== 活性調節因子 ==
== 活性調節因子 ==


RyRの活性調節因子に関しては、主に筋細胞や再構築系を用いた研究による多数の報告がある。詳細については、これらの報告をまとめた総説を参考にされたい<ref name="ref9" /><ref name="ref10" /><ref><pubmed>15618481</pubmed></ref>。
RyRの活性調節因子に関しては、主に筋細胞や再構築系を用いた多数の研究報告がある。詳細については、これらの報告をまとめた総説を参考にされたい<ref name="ref9" /><ref name="ref10" /><ref name="ref11"><pubmed>15618481</pubmed></ref>。


===カルシウムイオン===
===カルシウムイオン===
58行目: 58行目:
== 機能  ==
== 機能  ==


 薬理学的な刺激により、脳における機能的RyRの存在、あるいはRyRを介するCa2+放出の存在を示した報告は、現在では多数存在する。しかし、生理的な刺激によるRyRの活性化を示した報告は、薬理学的刺激による報告に比べると遥かに少なく、さらに、[[シナプス可塑性]]や個体の行動の様な機能的役割と関連付けたものは限られたものになり、RyRの脳における機能的役割は、未だ解明の途上にあると言える。
 薬理学的な刺激により、脳における機能的RyRの存在、あるいはRyRを介するカルシウム放出の存在を示した報告は、現在では多数存在する。しかし、生理的な刺激によるRyRの活性化を示した報告は、薬理学的刺激による報告に比べると遥かに少なく、さらに、[[シナプス可塑性]]や個体の行動の様な機能的役割と関連付けたものは限られたものになり、RyRの脳における機能的役割は、未だ解明の途上にあると言える<ref name="ref11 />。


=== ノックアウトマウスの表現型 ===
=== ノックアウトマウスの表現型 ===
70行目: 70行目:
==== RyR2欠損マウス ====
==== RyR2欠損マウス ====


: RyR2欠損マウスは、心拍動の開始直後の胎生10日ごろに心筋細胞の小胞体Ca2+過剰負荷により心不全となり死亡する<ref><pubmed>9628868</pubmed></ref>。  
: RyR2欠損マウスは、心拍動の開始直後の胎生10日ごろに心筋細胞の小胞体カルシウム過剰負荷により心不全となり死亡する<ref><pubmed>9628868</pubmed></ref>。  


==== RyR3欠損マウス ====
==== RyR3欠損マウス ====
78行目: 78行目:
===シナプス前終末における機能===
===シナプス前終末における機能===


 海馬[[CA3]]領域の[[苔状線維]][[軸索]]([[シナプス前終末]]よりも[[軸索起始部]]寄りの部分)においては、電位依存性Ca2+チャネルによるCa2+シグナルがRyR1によるCICR機構を介して増幅されることにより、高頻度刺激に神経伝達物資の放出が増強されることが示されており、シナプス前終末における可塑性へのRyRの関与も示唆されている<ref><pubmed>18687898</pubmed></ref>。
 海馬[[CA3]]領域の[[苔状線維]][[軸索]]([[シナプス前終末]]よりも[[軸索起始部]]寄りの部分)においては、電位依存性カルシウムチャネルによるカルシウムシグナルがRyR1によるCICR機構を介して増幅されることにより、高頻度刺激に神経伝達物資の放出が増強されることが示されており、シナプス前終末における可塑性へのRyRの関与も示唆されている<ref><pubmed>18687898</pubmed></ref>。


=== 一酸化窒素依存的カルシウム放出 ===
=== 一酸化窒素依存的カルシウム放出 ===


 脂質二重膜に発現させたRyR1の開口確率がNOの作用により上昇することは以前より知られていたが、この現象が生細胞で内因性のNOの作用により起こること、およびその機能的意義については長いこと不明であった。しかし、小脳[[平行線維]]-プルキンエ細胞シナプスにおけるNO依存的LTPがプルキンエ細胞内の細胞内Ca2+シグナルにも依存的であることが判明したことから、プルキンエ細胞内でのNOとCa2+との関連性について解明が進み、神経活動によって産生放出された内因性のNOがRyR1を活性化することでCa2+放出が誘導される現象、NO依存的Ca2+放出(NO-induced Ca2+ release; NICR)が発見された。このNICRはウサギRyR1における3635位のシステイン(マウスでは3636位に相当)がNOによりS-ニトロシル化されることで誘導されると推測されている。また、NO合成酵素の発現は平行線維では見られるがプルキンエ細胞では見られないことから、平行線維活動により産生放出されたNOがプルキンエ細胞内のRyR1を活性化すると考えられている。これまでに、NICRの小脳平行線維-プルキンエ細胞シナプスにおけるLTPへの関与、および、中大脳動脈の虚血再灌流による大脳皮質の神経細胞死への関与が示唆されている<ref><pubmed>22036948</pubmed></ref>。  
 脂質二重膜に発現させたRyR1の開口確率がNOの作用により上昇することは以前より知られていたが、この現象が生細胞で内因性のNOの作用により起こること、およびその機能的意義については長いこと不明であった。しかし、小脳[[平行線維]]-プルキンエ細胞シナプスにおけるNO依存的LTPがプルキンエ細胞内の細胞内カルシウムシグナルにも依存的であることが判明したことから、プルキンエ細胞内でのNOとカルシウムとの関連性について解明が進み、神経活動によって産生放出された内因性のNOがRyR1を活性化することでカルシウム放出が誘導される現象、NO依存的カルシウム放出(NO-induced Ca<sup>2+</sup> release; NICR)が発見された。このNICRはウサギRyR1における3635位のシステイン(マウスでは3636位に相当)がNOによりS-ニトロシル化されることで誘導されると推測されている。また、NO合成酵素の発現は平行線維では見られるがプルキンエ細胞では見られないことから、平行線維活動により産生放出されたNOがプルキンエ細胞内のRyR1を活性化すると考えられている。これまでに、NICRの小脳平行線維-プルキンエ細胞シナプスにおけるLTPへの関与、および、中大脳動脈の虚血再灌流による大脳皮質の神経細胞死への関与が示唆されている<ref><pubmed>22036948</pubmed></ref>。  


===脳型ジャンクトフィリン欠損マウスの解析===
===脳型ジャンクトフィリン欠損マウスの解析===


 骨格筋興奮収縮連関における電位依存性Ca2+チャネル(L型チャネル)とRyRの機能共役のためには、細胞膜と小胞体膜とが近接した結合膜構造の形成が必要であるが、この結合膜構造に関与する分子として単離同定されたジャンクトフィリンの遺伝子欠損マウスからも、脳におけるRyRの機能的役割が示唆されている<ref><pubmed>18607668</pubmed></ref>。''詳細は[[ジャンクトフィリン]]の項目参照。''
 骨格筋興奮収縮連関における電位依存性カルシウムチャネル(L型チャネル)とRyRとの機能共役のためには、細胞膜と小胞体膜とが近接した結合膜構造の形成が必要であるが、この結合膜構造に関与する分子として単離同定されたジャンクトフィリンの遺伝子欠損マウスからも、脳におけるRyRの機能的役割が示唆されている<ref><pubmed>18607668</pubmed></ref>。''詳細は[[ジャンクトフィリン]]の項目参照。''


== 疾患との関連 ==
== 疾患との関連 ==
78

回編集