170
回編集
Kinichinakashima (トーク | 投稿記録) 細編集の要約なし |
Kinichinakashima (トーク | 投稿記録) 細編集の要約なし |
||
10行目: | 10行目: | ||
== STAT3の構造と活性化のメカニズム == | == STAT3の構造と活性化のメカニズム == | ||
免疫系に作用するサイトカインとして同定されたinterleukin-6(IL-6)は、信号伝達に必須な受容体コンポーネントとして膜タンパク質glyco protein(gp130)を共通に利用するIL-6ファミリーサイトカインの一つである。IL-6ファミリーサイトカインは他にも、interleukin-11(IL-11)、oncostatin M、Leukemia Inhibitory Factor(LIF)、cardiotrophin-1 (CT-1)、Ciliary Neurotrophic Factor(CNTF)などが含まれる<ref name="ref4"><pubmed> 11820727 </pubmed></ref>)。IL- | 免疫系に作用するサイトカインとして同定されたinterleukin-6(IL-6)は、信号伝達に必須な受容体コンポーネントとして膜タンパク質glyco protein(gp130)を共通に利用するIL-6ファミリーサイトカインの一つである。IL-6ファミリーサイトカインは他にも、interleukin-11(IL-11)、oncostatin M、Leukemia Inhibitory Factor(LIF)、cardiotrophin-1 (CT-1)、Ciliary Neurotrophic Factor(CNTF)などが含まれる<ref name="ref4"><pubmed> 11820727 </pubmed></ref>)。IL-6ファミリーサイトカインは細胞膜上のサイトカイン受容体複合体中のサイトカイン特異的受容体と結合することで、IL-6ファミリーサイトカイン共通かつ必須の信号伝達因子であるgp130を含む信号伝達鎖の二量体化がおこる(図1)。その後、信号伝達鎖の細胞内領域に会合するJAKが活性化され、信号伝達鎖の細胞内領域中のチロシン残基をリン酸化する。リン酸化されたチロシン残基に、転写因子STAT3が自身のSH2(src homology 2)ドメインを介して会合、近接したJAKによりチロシンリン酸化(チロシン705)を受けることで活性化する<ref><pubmed> 9685167 </pubmed></ref>。チロシンリン酸化されたSTAT3分子はホモ二量体あるいは異なるSTATファミリー分子間でヘテロ二量体を形成し核へ移行した後、目的遺伝子の転写を制御する。JAK/STAT3経路はIL-6ファミリーやinsulin-like growth factor-1 (IGF-1) など複数のサイトカインや増殖因子の刺激により活性化することが知られている<ref name="ref1"><pubmed> 10486560 </pubmed></ref><ref name="ref2"><pubmed> 22772901 </pubmed></ref><ref name="ref3"><pubmed> 15998644 </pubmed></ref>。図2にSTAT3の構造を示す。マウスSTAT3は770アミノ酸残基から構成され、DNA結合ドメインやリン酸化チロシン残基に結合するSH2ドメインを持つ。またリン酸化を受けることでSTAT3の活性に関わる705番目のチロシンと727番目のセリンを有する。 | ||
== 神経系での働き①:脳内におけるアストロサイト分化誘導 == | == 神経系での働き①:脳内におけるアストロサイト分化誘導 == | ||
IL-6ファミリーサイトカインの刺激により活性化したSTAT3は転写活性化因子としてグリア線維性酸性タンパク質glial fibrillary acidic protein (GFAP)のプロモーターに結合し、転写を促進する。GFAPはアストロサイトで特異的に発現するタンパク質であり、これまで神経幹細胞Neural stem cell (NSC) の培養系にIL-6ファミリーサイトカインを添加すると、JAK/STAT3経路を活性化することでアストロサイトへの分化が促進されることが明らかとなっている(図3)<ref name="ref4" /><ref name="ref1" />。また、STAT3をシグナル経路下流の転写因子とするIL-6ファミリーサイトカインとSmadをシグナル経路下流の転写因子とする骨形成因子bone morphogenetic protein (BMP)群(TGF-βスーパーファミリー)の両者は別々の受容体システムを介し、相乗的にアストロサイトの分化を誘導<ref><pubmed> 10205054 </pubmed></ref>することが明らかにされている。そのメカニズムとして転写活性化の補助的役割を果たす核内転写共役因子p300がサイトカイン刺激に応答して、二量体化したSTAT3のN末端と、ヘテロオリゴマー化したsmad1のC末端に、それぞれ同時に結合しSTAT3/p300/smad1複合体が形成される。これにより二種類サイトカインシグナルが核内で統合され、目的遺伝子GFAPの相乗的発現が起こる。 | |||
== 神経系での働き②:神経幹細胞増殖制御 == | == 神経系での働き②:神経幹細胞増殖制御 == | ||
22行目: | 22行目: | ||
== 神経系での働き③:てんかん発作誘導性神経細胞死における神経保護作用 == | == 神経系での働き③:てんかん発作誘導性神経細胞死における神経保護作用 == | ||
成体マウスにおいて興奮性アミノ酸の一種、カイニン酸kainic acid (KA)投与によるてんかん誘導に際し、抗てんかん薬として知られるcarbamazepine (CBZ)を投与すると、海馬のCA3領域において、ニューロン死の割合がKA投与のみの個体に比べ低いことが分かった。また、KA+ | 成体マウスにおいて興奮性アミノ酸の一種、カイニン酸kainic acid (KA)投与によるてんかん誘導に際し、抗てんかん薬として知られるcarbamazepine (CBZ)を投与すると、海馬のCA3領域において、ニューロン死の割合がKA投与のみの個体に比べ低いことが分かった。また、KA+CBZ投与マウスのCA3ニューロンにおいて、STAT3の発現レベルがmRNA、タンパク質においても上昇しており、活性化を表すチロシンリン酸化STAT3の増加も見られている。加えて、ニューロン保護タンパク質として知られているB-cell lymphoma-extra large (Bcl-xl) もまた、KA+CBZ投与マウスのCA3ニューロン内で発現レベルが高まっている上、CT-1の刺激によってSTAT3とSTAT1のヘテロ二量体がBcl-xl遺伝子に直接結合し、発現制御を行うという報告<ref><pubmed> 10866494 </pubmed></ref>から、CBZのシグナルを受けてJAK/STAT3経路が活性化し、Bcl-xlなどの抗アポトーシス分子の発現を誘導することで、てんかんによるニューロン死への保護効果が上昇することが示唆されている<ref name="ref2" />。しかし、CBZシグナルがどのようなメカニズムでJAK/STAT3経路が活性化しているかはいまだ明らかになっていない。炎症性サイトカインである腫瘍壊死因子tumor necrosis factor-α (TNF-α)は神経疾患、または炎症反応中の脳で、神経細胞毒性を持ち<ref><pubmed> 7507336 </pubmed></ref>、高濃度添加によりニューロン死が観察される。一方、インスリン様成長因子insulin-like growth factor-1 (IGF-1)は頭部外傷など、脳内の炎症反応により多量に発現し、神経保護作用を発揮する<ref><pubmed> 9246719 </pubmed></ref><ref><pubmed> 14568359 </pubmed></ref>。加えて、TNF-αのみ添加したニューロン群より、IGF-1とTNF-αを添加したニューロン群においてニューロン死の割合が低かったことから、IGF-1はTNF-αにより誘導されるニューロン死の阻害という作用を有することが明らかになった。このニューロン保護効果は、詳細なメカニズムはいまだ明らかでないものの、JAK/STAT3経路がIGF-1により活性化し、サイトカイン抑制シグナル分子supressors of cytokine signaling 3 (SOCS-3)の転写を誘導し、SOCS3がIL-6ファミリーサイトカイン受容体複合体の信号伝達鎖のリン酸化チロシン残基とJAKに結合し、JAKの機能を阻害し、JAK/STAT3経路を抑制する<ref><pubmed> 10829066 </pubmed></ref>ためだと考えられる。しかしSOCS3がJAK/STAT3経路を負に制御することにより、TNF-αシグナルをどのように抑制するのかは明らかになっていない<ref name="ref3" /><ref><pubmed> 10070253 </pubmed></ref>。 | ||
== 神経系での働き④:脊髄損傷時の反応性アストロサイト分化誘導 == | == 神経系での働き④:脊髄損傷時の反応性アストロサイト分化誘導 == | ||
脊髄に損傷が起こると炎症反応が発生し、損傷部周辺の細胞は炎症性サイトカインを多量に分泌する。これらの刺激により損傷部周辺ではGFAP強陽性となる反応性アストロサイトの出現が観察される<ref><pubmed> 9989494 </pubmed></ref>。反応性アストロサイトは集合しグリア瘢痕を形成する<ref><pubmed> 12578228 </pubmed></ref>。グリア瘢痕は損傷部の物理的な防壁となり、損傷部を外部環境刺激から守ることで中枢神経系を再統合する役割を持つ<ref><pubmed> 9724451 </pubmed></ref> | 脊髄に損傷が起こると炎症反応が発生し、損傷部周辺の細胞は炎症性サイトカインを多量に分泌する。これらの刺激により損傷部周辺ではGFAP強陽性となる反応性アストロサイトの出現が観察される<ref><pubmed> 9989494 </pubmed></ref>。反応性アストロサイトは集合しグリア瘢痕を形成する<ref><pubmed> 12578228 </pubmed></ref>。グリア瘢痕は損傷部の物理的な防壁となり、損傷部を外部環境刺激から守ることで中枢神経系を再統合する役割を持つ<ref><pubmed> 9724451 </pubmed></ref>。しかし、グリア瘢痕は、chondroitin sulfate proteoglycans (CSPGs) などの軸索伸長阻害因子を分泌し、損傷部周辺ニューロンの軸索再伸長を阻害するため、神経軸索再生が抑制される<ref><pubmed> 12626698 </pubmed></ref>。脊髄損傷を起こしたマウスへ、IL-6ファミリー受容体の機能を阻害する分子IL-6 receptor monoclonal antibody (MR16-1)を添加すると、損傷部の反応性アストロサイトの数が減少し、神経機能の回復が観察された。また、アストロサイト特異的にSTAT3遺伝子を欠損させたマウスに脊髄損傷を起こしても、反応性アストロサイトが出現せず、グリア瘢痕が形成できない。先に述べたようにグリア瘢痕は損傷部を外部環境刺激から守る役割を持つので、アストロサイト特異的STAT3遺伝子欠損マウスは脊髄損傷が起きた後、傷口と炎症部が広がっていき、部分的に運動機能がさらに低下する<ref><pubmed> 18614693 </pubmed></ref>。これらのことからIL-6ファミリーサイトカイン刺激によるJAK/STAT3経路の活性化によって、反応性アストロサイトの分化が誘導されることが示唆された<ref name><pubmed> 15048924 </pubmed></ref>。 | ||
== 総括 == | == 総括 == |
回編集