「上衣細胞」の版間の差分

1,004 バイト追加 、 2012年12月5日 (水)
編集の要約なし
編集の要約なし
編集の要約なし
19行目: 19行目:
===2-2. E2細胞===<br> E2細胞はE1細胞と同様に脳室壁に存在し、免疫組織化学的には、S100beta、CD24、vimentin、GFAP陽性である。透過電子顕微鏡による微細構造の観察では、E2細胞は基本的にE1細胞と同様の形態学的特徴を持つが、多数のミトコンドリアが基底小体付近ではなく核近傍に存在している点、基底小体近傍に電子密度の高い粒子の凝集体が存在する点、が異なる。E2細胞は複雑な構造の基底小体を2つ持ち、そこから2本の運動性繊毛が伸長している<ref name=ref17 />。  
===2-2. E2細胞===<br> E2細胞はE1細胞と同様に脳室壁に存在し、免疫組織化学的には、S100beta、CD24、vimentin、GFAP陽性である。透過電子顕微鏡による微細構造の観察では、E2細胞は基本的にE1細胞と同様の形態学的特徴を持つが、多数のミトコンドリアが基底小体付近ではなく核近傍に存在している点、基底小体近傍に電子密度の高い粒子の凝集体が存在する点、が異なる。E2細胞は複雑な構造の基底小体を2つ持ち、そこから2本の運動性繊毛が伸長している<ref name=ref17 />。  


===2-3. 伸長上衣細胞===<br> 伸長上衣細胞は、基底面から長い放射状の突起を血管や神経核、隣接した上衣細胞、アストロサイト等に伸ばしている双極性の細胞である<ref name=ref6 /><ref name=ref33><pubmed> 16344112</pubmed></ref>[6,33]。伸長上衣細胞は、脳室壁内の位置や形態、微細構造の違いによってalpha1、alpha2、beta1、beta2の4種類に分類されている<ref name=ref33 />[33]。免疫組織化学的には、上衣細胞と同様にS100beta、Sox2、vimentin陽性である一方、GFAP、nestin、GLAST陽性を示し、アストロサイトや放射状グリアの特徴も併せ持つ。さらには、GABAやグルタミン酸など神経伝達物質の受容体を発現している。透過電子顕微鏡による観察では、伸長上衣細胞は、クロマチン凝集を示す不規則な形態の核と、ミトコンドリアやリソソーム、多数の粗面小胞体、大きなゴルジ体を含んだ電子密度の高い細胞質が特徴である<ref name=ref32 />[32]。  
===2-3. 伸長上衣細胞===<br> 伸長上衣細胞は、基底面から長い放射状の突起を血管や神経核、隣接した上衣細胞、アストロサイト等に伸ばしている双極性の細胞である<ref name=ref6 /><ref name=ref33><pubmed> 16344112</pubmed></ref>。伸長上衣細胞は、脳室壁内の位置や形態、微細構造の違いによってalpha1、alpha2、beta1、beta2の4種類に分類されている<ref name=ref33 />。免疫組織化学的には、上衣細胞と同様にS100beta、Sox2、vimentin陽性である一方、GFAP、nestin、GLAST陽性を示し、アストロサイトや放射状グリアの特徴も併せ持つ。さらには、GABAやグルタミン酸など神経伝達物質の受容体を発現している。透過電子顕微鏡による観察では、伸長上衣細胞は、クロマチン凝集を示す不規則な形態の核と、ミトコンドリアやリソソーム、多数の粗面小胞体、大きなゴルジ体を含んだ電子密度の高い細胞質が特徴である<ref name=ref32 />。  


===2-4. 脊髄中心管上衣細胞===<br> 脊髄中心管は3種類の上衣細胞(放射状、立方状、伸長上衣状)で覆われており、全てのサブタイプは1-3本の9+2型繊毛を有している<ref name=ref30 /><ref name=ref31 />[30,31]。放射状上衣細胞は中心管の背側極及び腹側極に局在し、基底面から長い突起を伸ばしている。多数の立方状及び伸長上衣状上衣細胞は中心管の全周に存在している。脊髄中心管上衣細胞の中で最も数が多いのは2本の繊毛を持つタイプで、免疫組織化学的には、CD24、FoxJ1、CD133、S100beta、Sox2、vimentin陽性である。この細胞は、形態学的には脳室壁に存在しているE2細胞と似ているが、E2細胞と比較して、電子密度の高い暗い細胞質を持つ点や基底小体近傍の高電子密度領域が小さい点が異なっている。<br>  
===2-4. 脊髄中心管上衣細胞===<br> 脊髄中心管は3種類の上衣細胞(放射状、立方状、伸長上衣状)で覆われており、全てのサブタイプは1-3本の9+2型繊毛を有している<ref name=ref30 /><ref name=ref31 />。放射状上衣細胞は中心管の背側極及び腹側極に局在し、基底面から長い突起を伸ばしている。多数の立方状及び伸長上衣状上衣細胞は中心管の全周に存在している。脊髄中心管上衣細胞の中で最も数が多いのは2本の繊毛を持つタイプで、免疫組織化学的には、CD24、FoxJ1、CD133、S100beta、Sox2、vimentin陽性である。この細胞は、形態学的には脳室壁に存在しているE2細胞と似ているが、E2細胞と比較して、電子密度の高い暗い細胞質を持つ点や基底小体近傍の高電子密度領域が小さい点が異なっている。<br>  


==3. 上衣細胞の機能==<br>===3-1. 繊毛運動による脳脊髄液流の発生と物質運搬===<br> 上衣細胞の繊毛は、基底小体から伸長している(図3)。基底小体は中心小体由来であり、9対の微小管からなるシリンダー構造をとる。基底小体は細胞膜に結合しており、ルートレットと呼ばれる構造物によって細胞内に係留されている[34-36]。上衣細胞の繊毛は、外周に位置する9対の微小管及びその内部に位置する1対の微小管で形成された軸糸を持つ、「9+2型」の運動性繊毛である。微小管結合モーターであるDyneinや放射状スポークのはたらきで繊毛が曲がり、繊毛運動が生み出される[37]。上衣細胞の繊毛運動は気管や卵管のそれと同様に非対称的であり、繊毛が根本から曲がることで液流を生み出す前方ストロークと、その曲がりが解消される後方ストロークが交互に生じている(図4)。脳脊髄液流は、その分泌源である脈絡叢からの受動的な流れや心臓の拍動、脳実質中を走る動脈近傍の流れなど様々な要因・経路が関与している[38,39]が、上衣細胞の繊毛運動は、脳室面付近における効率的かつ継続的な脳脊髄液流の維持に関与すると考えられている[40]。<br> 脳脊髄液中には、レチノイン酸、Slit2/3やSemaphorin3Fなどの反発性因子、IGF2やTGF-beta、FGFなどの増殖因子等、神経発生に重要な因子が含まれている[41-43]。成体脳において脈絡叢から分泌されるSlit2は、上衣細胞の繊毛運動によって脳室内及び上衣細胞下の脳室下帯に濃度勾配が形成され、新生ニューロンの移動方向を制御していることが報告されており[44]、繊毛運動による脳脊髄液内の物質運搬は重要な機能である。<br> E2細胞における2本の繊毛、及び脊髄中心管上衣細胞における1~3本の繊毛は、いずれも9+2型の運動性繊毛ではあるが、おそらく液流を生み出すには不十分である。代わりに、脳脊髄液流の物質的な変化を機械的もしくは化学的に感知するセンサーの役割を担う可能性があるが、詳細は不明である[17,45]。<br> マウス脳においては、繊毛の運動異常や脳脊髄液流の方向異常を持つマウスは必ず水頭症になる[40,46-48]ことから、上衣細胞の繊毛異常と水頭症の間に直接的な相関関係が見られる[49]。ヒトではこの相関関係は顕著ではないが、一次繊毛機能不全症候群の患者は健常者に比べて水頭症になりやすい傾向があることが報告されている[50,51]。ヒトはマウスと比較して脳室が大きいため、上衣細胞の繊毛異常の影響がマウスよりも出にくいが、脳室水道など脳室内の狭い領域では脳脊髄液の流れに影響を与えると考えられる。水頭症の脳ではしばしば神経炎症も生じているが、生後の上衣細胞発生時期に神経炎症が生じると、繊毛形成不全および水頭症を発症することが最近報告された[52]。水頭症発症のメカニズムを解明するためには、ヒトやマウスで上衣細胞の繊毛運動のメカニズムに加え、炎症との関連についてより研究を深める必要がある。  
==3. 上衣細胞の機能==<br>===3-1. 繊毛運動による脳脊髄液流の発生と物質運搬===<br> 上衣細胞の繊毛は、基底小体から伸長している(図3)。基底小体は中心小体由来であり、9対の微小管からなるシリンダー構造をとる。基底小体は細胞膜に結合しており、ルートレットと呼ばれる構造物によって細胞内に係留されている<ref name=ref34><pubmed> 5341020</pubmed></ref><ref name=ref35><pubmed> 9377640</pubmed></ref><ref name=ref36><pubmed> 15870283</pubmed></ref>。上衣細胞の繊毛は、外周に位置する9対の微小管及びその内部に位置する1対の微小管で形成された軸糸を持つ、「9+2型」の運動性繊毛である。微小管結合モーターであるDyneinや放射状スポークのはたらきで繊毛が曲がり、繊毛運動が生み出される<ref name=ref37><pubmed> 9641685</pubmed></ref>。上衣細胞の繊毛運動は気管や卵管のそれと同様に非対称的であり、繊毛が根本から曲がることで液流を生み出す前方ストロークと、その曲がりが解消される後方ストロークが交互に生じている(図4)。脳脊髄液流は、その分泌源である脈絡叢からの受動的な流れや心臓の拍動、脳実質中を走る動脈近傍の流れなど様々な要因・経路が関与している<ref name=ref38><pubmed> 22896675</pubmed></ref><ref name=ref39>安達一英, 高橋浩一, 澤本和延<br>脳脊髄液に関する基礎知識:産生, 循環, 吸収のメカニズム<br>脊椎脊髄ジャーナル:2006, 19, 329-333.</ref>が、上衣細胞の繊毛運動は、脳室面付近における効率的かつ継続的な脳脊髄液流の維持に関与すると考えられている<ref name=ref40><pubmed> 18250199</pubmed></ref>。<br> 脳脊髄液中には、レチノイン酸、Slit2/3やSemaphorin3Fなどの反発性因子、IGF2やTGF-beta、FGFなどの増殖因子等、神経発生に重要な因子が含まれている<ref name=ref41><pubmed> 10482237</pubmed></ref><ref name=ref42><pubmed> 21382550</pubmed></ref><ref name=ref43><pubmed> 14960623</pubmed></ref>。成体脳において脈絡叢から分泌されるSlit2は、上衣細胞の繊毛運動によって脳室内及び上衣細胞下の脳室下帯に濃度勾配が形成され、新生ニューロンの移動方向を制御していることが報告されており<ref name=ref44><pubmed> 16410488</pubmed></ref>、繊毛運動による脳脊髄液内の物質運搬は重要な機能である。<br> E2細胞における2本の繊毛、及び脊髄中心管上衣細胞における1~3本の繊毛は、いずれも9+2型の運動性繊毛ではあるが、おそらく液流を生み出すには不十分である。代わりに、脳脊髄液流の物質的な変化を機械的もしくは化学的に感知するセンサーの役割を担う可能性があるが、詳細は不明である<ref name=ref17 /><ref name=ref45><pubmed> 3888350</pubmed></ref>。<br> マウス脳においては、繊毛の運動異常や脳脊髄液流の方向異常を持つマウスは必ず水頭症になる<ref name=ref40 /><ref name=ref46><pubmed> 15269178</pubmed></ref><ref name=ref47><pubmed> 18287022</pubmed></ref><ref name=ref48><pubmed> 12167721</pubmed></ref>ことから、上衣細胞の繊毛異常と水頭症の間に直接的な相関関係が見られる<ref name=ref49><pubmed> 15495266</pubmed></ref>。ヒトではこの相関関係は顕著ではないが、一次繊毛機能不全症候群の患者は健常者に比べて水頭症になりやすい傾向があることが報告されている<ref name=ref50><pubmed> 2357097</pubmed></ref><ref name=ref51><pubmed> 17059358</pubmed></ref>。ヒトはマウスと比較して脳室が大きいため、上衣細胞の繊毛異常の影響がマウスよりも出にくいが、脳室水道など脳室内の狭い領域では脳脊髄液の流れに影響を与えると考えられる。水頭症の脳ではしばしば神経炎症も生じているが、生後の上衣細胞発生時期に神経炎症が生じると、繊毛形成不全および水頭症を発症することが最近報告された<ref name=ref52><pubmed> 22915098</pubmed></ref>。水頭症発症のメカニズムを解明するためには、ヒトやマウスで上衣細胞の繊毛運動のメカニズムに加え、炎症との関連についてより研究を深める必要がある。  


===3-2. 物質交換===<br> 上衣細胞同士の密着結合は細胞全周性に形成されていない。それゆえ上衣細胞間の「隙間」を介して脳実質と脳脊髄液の間で物質交換が可能になっている。生理的な条件下において、脳実質の細胞外液が脳脊髄液へ拡散することが観察されており、脳実質で生じた排出物の除去に寄与していると考えられている[53]。ただし、この物質拡散の流れは静圧や浸透圧の変化によって逆になることもあり、この場合、脳脊髄液中の様々な物質は脳実質内へと移行する[54,55]。<br> 上衣細胞の隙間を通じた物質の受動拡散に加えて、上衣細胞の細胞質を介した積極的な物質輸送も存在する。上衣細胞が発現するグルコース輸送体GLUT1/2、Na+/K+/Cl-共輸送体、モノカルボン酸輸送体MCT1などは、これらの物質輸送の際に水分子を浸透圧に逆らって輸送する[56]。水分子輸送体であるaquaporinも上衣細胞に発現が認められる[57-60]が、実際に水分子の輸送に関与しているかは明らかにされていない。上衣細胞の膜上に発現する輸送体を介した積極的な物質輸送が水及びイオン濃度の調節を担い、脳内浸透圧の恒常性に寄与していると考えられる。<br> 主に第3脳室に存在する伸長上衣細胞の正確な機能は不明であるが、脳脊髄液から脳実質内への物質輸送を行っている可能性が考えられている。実際に、卵巣ホルモン依存的に伸長上衣細胞がインスリン様増殖因子IGF-1を脳脊髄液から取り込み、放射状の突起先端へ輸送したり、逆に下垂体門脈に伸ばした突起終末から物質を分泌したりすることが報告されている[61,62]。  
===3-2. 物質交換===<br> 上衣細胞同士の密着結合は細胞全周性に形成されていない。それゆえ上衣細胞間の「隙間」を介して脳実質と脳脊髄液の間で物質交換が可能になっている。生理的な条件下において、脳実質の細胞外液が脳脊髄液へ拡散することが観察されており、脳実質で生じた排出物の除去に寄与していると考えられている[53]。ただし、この物質拡散の流れは静圧や浸透圧の変化によって逆になることもあり、この場合、脳脊髄液中の様々な物質は脳実質内へと移行する[54,55]。<br> 上衣細胞の隙間を通じた物質の受動拡散に加えて、上衣細胞の細胞質を介した積極的な物質輸送も存在する。上衣細胞が発現するグルコース輸送体GLUT1/2、Na+/K+/Cl-共輸送体、モノカルボン酸輸送体MCT1などは、これらの物質輸送の際に水分子を浸透圧に逆らって輸送する[56]。水分子輸送体であるaquaporinも上衣細胞に発現が認められる[57-60]が、実際に水分子の輸送に関与しているかは明らかにされていない。上衣細胞の膜上に発現する輸送体を介した積極的な物質輸送が水及びイオン濃度の調節を担い、脳内浸透圧の恒常性に寄与していると考えられる。<br> 主に第3脳室に存在する伸長上衣細胞の正確な機能は不明であるが、脳脊髄液から脳実質内への物質輸送を行っている可能性が考えられている。実際に、卵巣ホルモン依存的に伸長上衣細胞がインスリン様増殖因子IGF-1を脳脊髄液から取り込み、放射状の突起先端へ輸送したり、逆に下垂体門脈に伸ばした突起終末から物質を分泌したりすることが報告されている[61,62]。  
33

回編集