「神経筋接合部」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
17行目: 17行目:
== シナプス形成に関わる分子機構  ==
== シナプス形成に関わる分子機構  ==


 脊椎動物の神経筋接合部を用いて、発生過程におけるシナプス形成過程の分子機構の研究が進められた。ヒダ状の構造のように神経筋接合部特有の構造もあるが、基本的なシナプス前後の構造、例えば、アクティブゾーンや受容体集積部位などは、神経―神経間のシナプスと同様の構造であり、共通のシナプス形成機構が存在すると考えられ、良いモデル系となっている。Xenopus胚から単離・培養された神経筋接合部のモデル系を用いて、神経が筋繊維に接触前の成長円錐の状態でも神経伝達物質を放出することができること<ref><pubmed>6312327</pubmed></ref>、神経終末が筋肉細胞に接触すると、数秒以内にアセチルコリン放出が観測され、20分後には放出量の増大が見られた。このことから、筋肉細胞と神経終末が接触すると数分以内に、機能的なシナプス結合が形成されはじめることが明らかになった<ref><pubmed>2723739</pubmed></ref>。シナプス構造の分化過程のうちシナプス部へのアセチルコリン受容体の集積は、最初に、神経終末が筋肉細胞に接触してから、数時間以内に始まる。神経筋接合部におけるアセチルコリン受容体の集積は、コリン作動性神経終末特異的であり、神経細胞から集積を促す分子が分泌されていると考えられ、アグリンという蛋白質が同定された<ref><pubmed>1329871</pubmed></ref>。アグリンは、ヘパラン硫酸プロテオグリカンであり、ラミニンやヘパリン、ヘパリン結合タンパク質、インテグリンなどと相互作用する部位をもち<ref><pubmed>9430625</pubmed></ref>、運動神経終末から分泌され、シナプス間隙内の基底膜成分の一つとして組み込まれる。さらに、アグリンの受容体の一部として、muscle-specific receptor tyrosine kinase (MuSK)が同定され<ref><pubmed>8653786</pubmed></ref>、以降、シナプス後部の構造構築に働く細胞内シグナル機構の研究が盛んに行われている。近年では、分泌型glycoproteinである[[Wnt]]がMuSKのリガンドとして働く可能性が示され<ref><pubmed>12165471</pubmed></ref>、研究の新展開が見られる。アセチルコリン受容体の集合だけでなく、合成も神経細胞の接触により引き起こされ<ref name="ref1" />、神経由来のシナプス特異的な伝達物質受容体の転写を誘導する因子の関与が示唆されている<ref name="ref3" />。生体内において、アセチルコリン受容体の転写は、シナプス直近の核で、他の核よりも高くなっていることが示されている<ref name="ref9" />。  
 脊椎動物の神経筋接合部を用いて、発生過程におけるシナプス形成過程の分子機構の研究が進められた。ヒダ状の構造のように神経筋接合部特有の構造もあるが、基本的なシナプス前後の構造、例えば、アクティブゾーンや受容体集積部位などは、神経―神経間のシナプスと同様の構造であり、共通のシナプス形成機構が存在すると考えられ、良いモデル系となっている。Xenopus胚から単離・培養された神経筋接合部のモデル系を用いて、神経が筋線維に接触前の成長円錐の状態でも神経伝達物質を放出することができること<ref><pubmed>6312327</pubmed></ref>、神経終末が筋肉細胞に接触すると、数秒以内にアセチルコリン放出が観測され、20分後には放出量の増大が見られた。このことから、筋肉細胞と神経終末が接触すると数分以内に、機能的なシナプス結合が形成されはじめることが明らかになった<ref><pubmed>2723739</pubmed></ref>。シナプス構造の分化過程のうちシナプス部へのアセチルコリン受容体の集積は、最初に、神経終末が筋肉細胞に接触してから、数時間以内に始まる。神経筋接合部におけるアセチルコリン受容体の集積は、コリン作動性神経終末特異的であり、神経細胞から集積を促す分子が分泌されていると考えられ、アグリンという蛋白質が同定された<ref><pubmed>1329871</pubmed></ref>。アグリンは、ヘパラン硫酸プロテオグリカンであり、ラミニンやヘパリン、ヘパリン結合タンパク質、インテグリンなどと相互作用する部位をもち<ref><pubmed>9430625</pubmed></ref>、運動神経終末から分泌され、シナプス間隙内の基底膜成分の一つとして組み込まれる。さらに、アグリンの受容体の一部として、muscle-specific receptor tyrosine kinase (MuSK)が同定され<ref><pubmed>8653786</pubmed></ref>、以降、シナプス後部の構造構築に働く細胞内シグナル機構の研究が盛んに行われている。近年では、分泌型glycoproteinである[[Wnt]]がMuSKのリガンドとして働く可能性が示され<ref><pubmed>12165471</pubmed></ref>、研究の新展開が見られる。アセチルコリン受容体の集合だけでなく、合成も神経細胞の接触により引き起こされ<ref name="ref1" />、神経由来のシナプス特異的な伝達物質受容体の転写を誘導する因子の関与が示唆されている<ref name="ref3" />。生体内において、アセチルコリン受容体の転写は、シナプス直近の核で、他の核よりも高くなっていることが示されている<ref name="ref9" />。  


== シナプス除去に関わる分子機構  ==
== シナプス除去に関わる分子機構  ==


 脊椎動物の神経筋接合部は、初期シナプス形成の良いモデルとなっているだけでなく、出来上がったシナプスが再編される過程であるシナプス競合のモデルとしても研究が盛んである。脊椎動物の神経筋接合部では、発生初期において、一本の筋繊維上に、複数の神経繊維の終末がシナプスを形成する。最終的に、単一の運動神経から強いシナプス入力を受け取る筋繊維では、やがて、一本の神経繊維からの終末だけが残るように他の神経繊維からの終末は除去される。これは、複数の神経終末間で競合が起こり、シナプス除去の機構が働いた結果起こると考えられている<ref><pubmed>5499804</pubmed></ref> <ref><pubmed>978579</pubmed></ref> <ref><pubmed>8426240</pubmed></ref>。シナプス除去は、神経細胞の活動を抑制すると、抑制されることから、神経活動依存的であることが示されている<ref><pubmed>14946732</pubmed></ref>。アセチルコリンのアンタゴニスト、α-Bungarotoxinを微小領域に投与すると、投与された領域はシナプス除去される。しかし、筋繊維全体にα-Bungarotoxinが投与されると、シナプス競合は起こらない<ref><pubmed>7990923</pubmed></ref>。これらのことから、神経活動依存的に筋肉細胞側からの因子(神経栄養因子など)を奪い合う結果、シナプス競合・除去が起こる可能性や、筋肉側から、シナプスを除去するような因子が放出されていて、活動の高い神経終末は、その毒性から守られているという可能性や、活動の高いシナプスでは、筋肉内でシナプスを保護する機構が活性化され、さらに、それ以外のシナプスを除去する機構も活性化させるという仮説が、考えられている<ref name="ref9" />。
 脊椎動物の神経筋接合部は、初期シナプス形成の良いモデルとなっているだけでなく、出来上がったシナプスが再編される過程であるシナプス競合のモデルとしても研究が盛んである。脊椎動物の神経筋接合部では、発生初期において、一本の筋線維上に、複数の神経線維の終末がシナプスを形成する。最終的に、単一の運動神経から強いシナプス入力を受け取る筋線維では、やがて、一本の神経線維からの終末だけが残るように他の神経線維からの終末は除去される。これは、複数の神経終末間で競合が起こり、シナプス除去の機構が働いた結果起こると考えられている<ref><pubmed>5499804</pubmed></ref> <ref><pubmed>978579</pubmed></ref> <ref><pubmed>8426240</pubmed></ref>。シナプス除去は、神経細胞の活動を抑制すると、抑制されることから、神経活動依存的であることが示されている<ref><pubmed>14946732</pubmed></ref>。アセチルコリンのアンタゴニスト、α-Bungarotoxinを微小領域に投与すると、投与された領域はシナプス除去される。しかし、筋線維全体にα-Bungarotoxinが投与されると、シナプス競合は起こらない<ref><pubmed>7990923</pubmed></ref>。これらのことから、神経活動依存的に筋肉細胞側からの因子(神経栄養因子など)を奪い合う結果、シナプス競合・除去が起こる可能性や、筋肉側から、シナプスを除去するような因子が放出されていて、活動の高い神経終末は、その毒性から守られているという可能性や、活動の高いシナプスでは、筋肉内でシナプスを保護する機構が活性化され、さらに、それ以外のシナプスを除去する機構も活性化させるという仮説が、考えられている<ref name="ref9" />。


== 無脊椎動物の神経筋接合部  ==
== 無脊椎動物の神経筋接合部  ==


 神経筋接合部を用いた研究において、無脊椎動物の神経筋接合部は優れた研究対象となっている。特に、遺伝学的手法・分子生物学的手法が容易に用いることができ、機能分子の同定が容易に行えるキイロショウジョウバエ胚および幼虫の体壁筋の神経筋接合部を用いての研究が盛んになった。室温(25度)の下、卵内において産卵後約13時間までに、筋肉細胞の融合が完成し、運動神経の成長円錐が、筋組織の表面に到達し、接触を開始する。産卵後約14-15時間には、機能的なシナプスが、筋肉細胞上に形成され初め、産卵後約21時間で初期の機能的神経筋接合部が出来上がり、卵は孵化し、1齢幼虫となる。その後、2齢幼虫、3齢幼虫期を経て、蛹化する。幼虫期は、全体で、約6日間である。半体節に30本の筋肉細胞が規則正しく配列しており、この構造が各体節左右で繰り返されている。約35個の運動神経細胞がこの30本の筋肉細胞を支配している<ref><pubmed>8833454</pubmed></ref>。どの神経細胞がどの筋肉細胞に接合部を形成するかが1細胞レベルで同定されており、シナプス形成機構研究の良いモデル系となっている. また、1齢幼虫から3齢幼虫まで、体は10倍以上伸張し、筋肉細胞も成長する。神経終末もそれに合わせて成長するため、標的細胞に合わせたシナプス形成・成熟機構の良いモデルとなっている。  
 神経筋接合部を用いた研究において、[[wikipedia:ja:無脊椎動物|無脊椎動物]]の神経筋接合部は優れた研究対象となっている。特に、遺伝学的手法・分子生物学的手法が容易に用いることができ、機能分子の同定が容易に行える[[wikipedia:ja:キイロショウジョウバエ|キイロショウジョウバエ]]胚および[[wikipedia:ja:幼虫|幼虫]]の体壁筋の神経筋接合部を用いての研究が盛んになった。室温(25度)の下、卵内において産卵後約13時間までに、[[wikipedia:ja:筋肉|筋肉]]細胞の融合が完成し、運動神経の[[成長円錐]]が、筋組織の表面に到達し、接触を開始する。産卵後約14-15時間には、機能的な[[シナプス]]が、筋肉細胞上に形成され初め、産卵後約21時間で初期の機能的神経筋接合部が出来上がり、卵は孵化し、1齢幼虫となる。その後、2齢幼虫、3齢幼虫期を経て、[[蛹]]化する。幼虫期は、全体で、約6日間である。半体節に30本の筋肉細胞が規則正しく配列しており、この構造が各体節左右で繰り返されている。約35個の運動神経細胞がこの30本の筋肉細胞を支配している<ref><pubmed>8833454</pubmed></ref>。どの神経細胞がどの筋肉細胞に接合部を形成するかが1細胞レベルで同定されており、シナプス形成機構研究の良いモデル系となっている. また、1齢幼虫から3齢幼虫まで、体は10倍以上伸張し、筋肉細胞も成長する。神経終末もそれに合わせて成長するため、標的細胞に合わせたシナプス形成・成熟機構の良いモデルとなっている。  


===脊椎動物の神経筋接合部との共通点===
===脊椎動物の神経筋接合部との共通点===


基本的なシナプス構造、シナプス前細胞内での、シナプス小胞の集積、シナプス後細胞における伝達物質受容体の集積などは共通である。シナプスを構成する多くのタンパク質も共通もしくは類似している。発生過程における、神経伝達物質受容体の集積と発現が神経細胞の支配に依存しておこることも共通である。また、脊椎動物の神経筋接合部とは異なり、発生過程において、最初から、決まった神経繊維が特定の筋肉細胞にシナプスを形成し、シナプス除去の機構はあまり必要ないと考えられていたが、近年では、神経活動を抑制すると、多シナプス状態が見られる<ref><pubmed>8613752</pubmed></ref>ことから、不要なシナプスを作らないようにする機構も存在している可能性も考えられるている。  
基本的なシナプス構造、[[シナプス前細胞]]内での、[[シナプス小胞]]の集積、[[シナプス後細胞]]における伝達物質受容体の集積などは共通である。シナプスを構成する多くのタンパク質も共通もしくは類似している。発生過程における、神経伝達物質受容体の集積と発現が神経細胞の支配に依存しておこることも共通である。また、脊椎動物の神経筋接合部とは異なり、発生過程において、最初から、決まった神経線維が特定の筋肉細胞にシナプスを形成し、[[シナプス除去]]の機構はあまり必要ないと考えられていたが、近年では、神経活動を抑制すると、多シナプス状態が見られる<ref><pubmed>8613752</pubmed></ref>ことから、不要なシナプスを作らないようにする機構も存在している可能性も考えられるている。  


===脊椎動物の神経筋接合部との異なる点===  
===脊椎動物の神経筋接合部との異なる点===  


幼虫の筋肉は単一の多核の細胞であり、脊椎動物のような、多数の筋繊維が1つの機能ユニットとして束になっている状態は見られない。成熟した3齢幼虫のシナプス後部側である筋肉細胞の膜は、複雑な何層にも折りたたまれたSubsynaptic reticurumという特殊な構造となっている。神経伝達物質としてはアセチルコリンではなく、[[グルタミン酸]]が用いられている。脊椎動物の骨格筋の神経筋接合部は筋肉繊維上の比較的中央の決まった場所に神経終末を形成しているが、幼虫の場合、筋肉細胞全体に広がるような神経終末を形成する。また、前述のように、脊椎動物の神経筋接合部においては、神経伝達物質受容体の集積にアグリンが関与しているが、ショウジョウバエでは、ホモログが見つかっていない。
幼虫の筋肉は単一の多核の細胞であり、脊椎動物のような、多数の筋線維が1つの機能ユニットとして束になっている状態は見られない。成熟した3齢幼虫のシナプス後部側である筋肉細胞の膜は、複雑な何層にも折りたたまれた[[Subsynaptic reticurum]]という特殊な構造となっている。神経伝達物質としては[[アセチルコリン]]ではなく、[[グルタミン酸]]が用いられている。脊椎動物の骨格筋の神経筋接合部は筋肉線維上の比較的中央の決まった場所に神経終末を形成しているが、幼虫の場合、筋肉細胞全体に広がるような神経終末を形成する。また、前述のように、脊椎動物の神経筋接合部においては、神経伝達物質受容体の集積に[[アグリン]]が関与しているが、ショウジョウバエでは、ホモログが見つかっていない。


===シナプス形成機構に関わる分子機構の同定===
===シナプス形成機構に関わる分子機構の同定===


この系を用いて、特定の筋肉細胞に発現しているタンパク質のスクリーニングから、いくつかのタンパク質が同定された。これらのタンパク質のうち、シナプス形成時の標的認識機構に関わるタンパク質が同定された。これらは、標的認識分子と呼ばれ、運動神経とそれがシナプスを形成する筋肉細胞との両方に存在し、目印として働くと考られている<ref>能瀬聡直、ショウジョウバエ運動神経細胞による標的選択機構. 実験医学,2002,20(5), 151−4.</ref> 。さらに、脊椎動物において、神経軸索の誘導や反発因子として働いている[[ネトリン]]、[[セマフォリン]]のショウジョウバエホモログも、特定の筋肉細胞において発現し、[[標的選択機構]]に関与することが示されている<ref><pubmed>9604933</pubmed></ref>。また最近、Wntシグナルが神経筋接合部の特異的標的選択機構に関わることが明らかになっている<ref><pubmed>17764943</pubmed></ref>。  
この系を用いて、特定の筋肉細胞に発現しているタンパク質のスクリーニングから、いくつかのタンパク質が同定された。これらのタンパク質のうち、シナプス形成時の標的認識機構に関わるタンパク質が同定された。これらは、[[標的認識分子]]と呼ばれ、運動神経とそれがシナプスを形成する筋肉細胞との両方に存在し、目印として働くと考られている<ref>能瀬聡直、ショウジョウバエ運動神経細胞による標的選択機構. 実験医学,2002,20(5), 151−4.</ref> 。さらに、脊椎動物において、神経軸索の誘導や反発因子として働いている[[ネトリン]]、[[セマフォリン]]のショウジョウバエホモログも、特定の筋肉細胞において発現し、[[標的選択機構]]に関与することが示されている<ref><pubmed>9604933</pubmed></ref>。また最近、[[Wntシグナル]]が神経筋接合部の特異的標的選択機構に関わることが明らかになっている<ref><pubmed>17764943</pubmed></ref>。  


===シナプス成熟機構・可塑性に関わる分子機構の同定===  
===シナプス成熟機構・可塑性に関わる分子機構の同定===  


幼虫の成長に伴い、筋肉細胞の成長に合わせた神経終末の成長が見られるため、筋肉細胞の大きさに合わせたシナプス成熟・大きさの調節に関わる分子機構の研究が進められた。一定の筋収縮を維持するためには、一定の神経伝達を維持する必要がある。幼虫の神経筋接合部では、このような恒常的なシナプス形成機構があり、実験的に加えられた変化、たとえば伝達物質受容体欠失個体などにおいて、その変化を補償するような機構が存在し、一定の神経伝達を維持している。この補償機構には、筋肉細胞からの逆行性因子が関わっていると考えられ、成長因子、[[骨形成因子]] (bone morphogenetic protein, BMP)シグナル系<ref><pubmed>12873382</pubmed></ref>や[[CaMKII]]<ref><pubmed>12873383</pubmed></ref> <ref><pubmed>12617966</pubmed></ref>が関与している可能性が示唆されている。  
幼虫の成長に伴い、筋肉細胞の成長に合わせた神経終末の成長が見られるため、筋肉細胞の大きさに合わせたシナプス成熟・大きさの調節に関わる分子機構の研究が進められた。一定の筋収縮を維持するためには、一定の神経伝達を維持する必要がある。幼虫の神経筋接合部では、このような恒常的なシナプス形成機構があり、実験的に加えられた変化、たとえば伝達物質受容体欠失個体などにおいて、その変化を補償するような機構が存在し、一定の神経伝達を維持している。この補償機構には、筋肉細胞からの逆行性因子が関わっていると考えられ、成長因子、[[骨形成因子]] ([[bone morphogenetic protein]], [[BMP]])シグナル系<ref><pubmed>12873382</pubmed></ref>や[[CaMKII]]<ref><pubmed>12873383</pubmed></ref> <ref><pubmed>12617966</pubmed></ref>が関与している可能性が示唆されている。  


== 関連項目  ==
== 関連項目  ==