「塩素チャネル」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
13行目: 13行目:
=== ClC塩素チャネル  ===
=== ClC塩素チャネル  ===


 塩素チャネルとして最初にシビレエイ(学名 Torpedo marmorata)の発電器官からクローニングされた遺伝子ファミリーに属するものである<ref name=ref1><pubmed>18307107</pubmed></ref>。哺乳類では9種類知られており、そのうち神経系に発現が知られているのは主にClC-2・-3・-4・-6・-7である。ClC-2は主に形質膜に分布して電位感受性塩素チャネルとして機能し、その他のClC-3・-4・-6・-7は主に細胞内小胞膜に分布し、チャネルというよりは、むしろCl<sup>-</sup>/H<sup>+</sup>-交換輸送体として機能すると考えられている。<br>  
 塩素チャネルとして最初にシビレエイ(学名 Torpedo marmorata)の発電器官からクローニングされた遺伝子ファミリーに属するものである<ref name="ref1"><pubmed>18307107</pubmed></ref>。哺乳類では9種類知られており、そのうち神経系に発現が知られているのは主にClC-2・-3・-4・-6・-7である。ClC-2は主に形質膜に分布して電位感受性塩素チャネルとして機能し、その他のClC-3・-4・-6・-7は主に細胞内小胞膜に分布し、チャネルというよりは、むしろCl<sup>-</sup>/H<sup>+</sup>-交換輸送体として機能すると考えられている。<br>  


<br>  
<br>  
19行目: 19行目:
=== カルシウム依存性塩素チャネル(calcium-activated chloride channel; CaCC)  ===
=== カルシウム依存性塩素チャネル(calcium-activated chloride channel; CaCC)  ===


 細胞内Ca<sup>2+</sup>濃度の上昇に応じて活性化される塩素チャネルである。古くから神経系の細胞を含む様々な細胞種で確認されていた最も典型的なCaCCの主な責任分子が、近年Anoctamin/TMEM16ファミリーのAno1/TMEM16A及びAno2/TMEM16Bであることが確定した<ref name=ref2><pubmed>22090471</pubmed></ref><ref name=ref3><pubmed>19827947</pubmed></ref>。また、卵黄状黄斑ジストロフィ(ベスト病)の原因遺伝子として主に網膜色素上皮に発現し、神経系全般にも或る程度の発現が認められているBestrophinファミリー(Best1-4)もCaCC活性を持つことが知られている<ref name=ref4><pubmed>18391176</pubmed></ref>。(なお、かつてCaCCの候補として挙げられていたCLCA及びTTYHファミリーのCaCCとしての機能については、現在否定的な見解が占める。)<br>  
 細胞内Ca<sup>2+</sup>濃度の上昇に応じて活性化される塩素チャネルである。古くから神経系の細胞を含む様々な細胞種で確認されていた最も典型的なCaCCの主な責任分子が、近年Anoctamin/TMEM16ファミリーのAno1/TMEM16A及びAno2/TMEM16Bであることが確定した<ref name="ref2"><pubmed>22090471</pubmed></ref><ref name="ref3"><pubmed>19827947</pubmed></ref>。また、卵黄状黄斑ジストロフィ(ベスト病)の原因遺伝子として主に網膜色素上皮に発現し、神経系全般にも或る程度の発現が認められているBestrophinファミリー(Best1-4)もCaCC活性を持つことが知られている<ref name="ref4"><pubmed>18391176</pubmed></ref>。(なお、かつてCaCCの候補として挙げられていたCLCA及びTTYHファミリーのCaCCとしての機能については、現在否定的な見解が占める。)<br>  


<br>  
<br>  
25行目: 25行目:
=== 細胞容積感受性塩素チャネル (volume-regulated chloride channel)  ===
=== 細胞容積感受性塩素チャネル (volume-regulated chloride channel)  ===


 典型的には細胞容積の増大に伴い開口する塩素チャネルである。神経系の細胞を含むあらゆる細胞種で容積増大により最も多く活性化されるのが、細胞容積感受性外向整流性アニオンチャネル(volume-sensitive outwardly rectifying anion channel; VSOR)と呼ばれるものであるが、その分子実体はまだ解明されていない<ref name=ref5><pubmed>19171657</pubmed></ref>。その他、マキシアニオンチャネル(maxi-anion channel)<ref name=ref6><pubmed>19340557</pubmed></ref>と呼ばれるものや、上述のClC-2・Best1も容積感受性があることが知られている。<br>  
 典型的には細胞容積の増大に伴い開口する塩素チャネルである。神経系の細胞を含むあらゆる細胞種で容積増大により最も多く活性化されるのが、細胞容積感受性外向整流性アニオンチャネル(volume-sensitive outwardly rectifying anion channel; VSOR)と呼ばれるものであるが、その分子実体はまだ解明されていない<ref name="ref5"><pubmed>19171657</pubmed></ref>。その他、マキシアニオンチャネル(maxi-anion channel)<ref name="ref6"><pubmed>19340557</pubmed></ref>と呼ばれるものや、上述のClC-2・Best1も容積感受性があることが知られている。<br>  


<br>  
<br>  
31行目: 31行目:
=== CFTR(cystic fibrosis transmembrane conductance regulator)塩素チャネル  ===
=== CFTR(cystic fibrosis transmembrane conductance regulator)塩素チャネル  ===


 嚢胞性線維症(cystic fibrosis)の原因遺伝子として同定されたCFTRは、神経系でも或る程度の発現が報告されている。cAMP依存性リン酸化酵素(PKA)によるリン酸化を通じて活性化される塩素チャネルである<ref name=ref7><pubmed>18304008</pubmed></ref>。<br>  
 嚢胞性線維症(cystic fibrosis)の原因遺伝子として同定されたCFTRは、神経系でも或る程度の発現が報告されている。cAMP依存性リン酸化酵素(PKA)によるリン酸化を通じて活性化される塩素チャネルである<ref name="ref7"><pubmed>18304008</pubmed></ref>。<br>  


<br>  
<br>  
63行目: 63行目:
=== 細胞容積感受性塩素チャネル  ===
=== 細胞容積感受性塩素チャネル  ===


 細胞容積感受性塩素チャネルとして代表的なVSORやマキシアニオンチャネルの分子実体は未だ明らかになっていないが、様々な大きさのポリエチレングリコールポリマーによるチャネル電流の抑制程度の検討から、それぞれのポアの内径が約0.6 nm、1.3 nmと推定されている<ref name=ref6 /><ref name=ref9><pubmed>15498575</pubmed></ref>。このことはVSORがグルタミン酸(分子径~0.35 nm)透過性を持つこと、マキシアニオンチャネルがATP(~0.65 nm)透過性を持つことと合致する。  
 細胞容積感受性塩素チャネルとして代表的なVSORやマキシアニオンチャネルの分子実体は未だ明らかになっていないが、様々な大きさのポリエチレングリコールポリマーによるチャネル電流の抑制程度の検討から、それぞれのポアの内径が約0.6 nm、1.3 nmと推定されている<ref name="ref6" /><ref name="ref9"><pubmed>15498575</pubmed></ref>。このことはVSORがグルタミン酸(分子径~0.35 nm)透過性を持つこと、マキシアニオンチャネルがATP(~0.65 nm)透過性を持つことと合致する。  


<br>  
<br>  
69行目: 69行目:
=== CFTR塩素チャネル  ===
=== CFTR塩素チャネル  ===


[[Image:CFTR.gif|thumb|right|620px|'''図3 CFTRチャネル'''<br>リン酸化領域(R domain)により結ばれた2つの膜貫通領域(MSD)とATP結合領域(NBD)のペアが向かい合ってチャネルが形成される(<ref name=ref8 />より転載)。]] CFTRチャネルは12個の膜貫通部位を持ち、そのうちの6個ずつが1組で1つの膜貫通領域(membrane-spanning (transmembrane) domain; MSD (TMD))を構成し、それぞれのMSDについて細胞質側に1つのATP結合領域(nucleotide-binding domain; NBD)が連結する。さらに、PKA によるリン酸化を受ける調節領域(Rドメイン)が2つのMSD-NBDペアを連結し、それらのペアが向かい合わせの配向を取ることにより、チャネルが形成されると考えられている。Rドメインがリン酸化を受けた状態でNBDにATPが結合すると、NBDの二量体化に伴ってチャネルゲートが開き、その後ATPの加水分解によりNBD二量体が解離し、チャネルゲートが閉じると考えられている<ref name=ref10><pubmed>23284076</pubmed></ref>。 <br>  
[[Image:CFTR.gif|thumb|right|620px|'''図3 CFTRチャネル'''<br>リン酸化領域(R domain)により結ばれた2つの膜貫通領域(MSD)とATP結合領域(NBD)のペアが向かい合ってチャネルが形成される(<ref name=ref8 />より転載)。]] CFTRチャネルは12個の膜貫通部位を持ち、そのうちの6個ずつが1組で1つの膜貫通領域(membrane-spanning (transmembrane) domain; MSD (TMD))を構成し、それぞれのMSDについて細胞質側に1つのATP結合領域(nucleotide-binding domain; NBD)が連結する。さらに、PKA によるリン酸化を受ける調節領域(Rドメイン)が2つのMSD-NBDペアを連結し、それらのペアが向かい合わせの配向を取ることにより、チャネルが形成されると考えられている。Rドメインがリン酸化を受けた状態でNBDにATPが結合すると、NBDの二量体化に伴ってチャネルゲートが開き、その後ATPの加水分解によりNBD二量体が解離し、チャネルゲートが閉じると考えられている<ref name="ref10"><pubmed>23284076</pubmed></ref>。 <br>  


<br>  
<br>  
77行目: 77行目:
=== ClC塩素チャネル  ===
=== ClC塩素チャネル  ===


 ClC-2は神経系では広く神経・グリアともに、また胎生期・生後ともに<ref name=ref11><pubmed>9693808</pubmed></ref>、その発現が認められる。ClC-3・-4・-6・-7も神経系に広く発現しているが、そのほとんどが細胞内小胞膜上(エンドソーム・リソソーム等、ClC-3は一部のシナプス小胞にも)に分布している。  
 ClC-2は神経系では広く神経・グリアともに、また胎生期・生後ともに<ref name="ref11"><pubmed>9693808</pubmed></ref>、その発現が認められる。ClC-3・-4・-6・-7も神経系に広く発現しているが、そのほとんどが細胞内小胞膜上(エンドソーム・リソソーム等、ClC-3は一部のシナプス小胞にも)に分布している。  


<br>  
<br>  
89行目: 89行目:
=== 細胞容積感受性塩素チャネル  ===
=== 細胞容積感受性塩素チャネル  ===


 責任分子が未同定であるVSORやマキシアニオンチャネルについて、その発現をmRNAやタンパク質の検出により確認することは現時点では不能だが、機能的には細胞に低浸透圧負荷を与えて膨張させることにより、少なくともVSORについては、その活性は神経・グリア双方で確実に観測される<ref name=ref5 />。マキシアニオンチャネルについても、神経・グリア双方でその活性は報告されているが、低浸透圧負荷の場合はVSOR活性の方が圧倒的に優勢なため、明瞭な観測には予めVSOR活性化を阻害剤で抑制しておく必要がある<ref name=ref6 />。  
 責任分子が未同定であるVSORやマキシアニオンチャネルについて、その発現をmRNAやタンパク質の検出により確認することは現時点では不能だが、機能的には細胞に低浸透圧負荷を与えて膨張させることにより、少なくともVSORについては、その活性は神経・グリア双方で確実に観測される<ref name="ref5" />。マキシアニオンチャネルについても、神経・グリア双方でその活性は報告されているが、低浸透圧負荷の場合はVSOR活性の方が圧倒的に優勢なため、明瞭な観測には予めVSOR活性化を阻害剤で抑制しておく必要がある<ref name="ref6" />。  


<br>  
<br>  
95行目: 95行目:
=== CFTR塩素チャネル  ===
=== CFTR塩素チャネル  ===


 神経系での発現は上皮細胞に比して少ないが、脳内の広範な部位の神経細胞、但し細胞膜上よりもむしろ細胞質内に多くチャネルの発現が認められるとの報告がある<ref name=ref12><pubmed>19654104</pubmed></ref>。一方、グリアではあまり発現は認められていない。  
 神経系での発現は上皮細胞に比して少ないが、脳内の広範な部位の神経細胞、但し細胞膜上よりもむしろ細胞質内に多くチャネルの発現が認められるとの報告がある<ref name="ref12"><pubmed>19654104</pubmed></ref>。一方、グリアではあまり発現は認められていない。  


<br>  
<br>  
105行目: 105行目:
==== ClC-2  ====
==== ClC-2  ====


 ClC-2は膜電位の過分極や細胞外pHの減少等で活性化される内向き整流性塩素チャネルである。多くの成熟した神経細胞のように細胞内Cl–濃度が低い(&lt; 10 mM)場合は、抑制性シナプス入力等で誘起される膜電位過分極の維持を通じて、神経細胞の興奮性の抑制に寄与しうる。また、ClC-2 KOマウスでは中枢神経系の白質変性(髄鞘内に多数の液胞形成)が起こることが報告されており、そのことからClC-2チャネルが、他のK+チャネルとともに、細胞間隙中の細胞外イオン濃度の恒常性維持に関わっている可能性が示唆されている<ref name=ref1 />。ClC-2は細胞膨張により活性化しうることも知られているが、その後の細胞容積の復元への役割は、同時に活性化されるVSORに比して小さいことがClC-2 KOマウスで示されている。(なお、かつてヒトClC-2の遺伝子(CLCN-2)異常は特発性全般性てんかんの原因となりうることが報告されたが、そのClC-2変異体の機能解析の結果、現在その報告に対しては否定的な見解が占める。)  
 ClC-2は膜電位の過分極や細胞外pHの減少等で活性化される内向き整流性塩素チャネルである。多くの成熟した神経細胞のように細胞内Cl–濃度が低い(&lt; 10 mM)場合は、抑制性シナプス入力等で誘起される膜電位過分極の維持を通じて、神経細胞の興奮性の抑制に寄与しうる。また、ClC-2 KOマウスでは中枢神経系の白質変性(髄鞘内に多数の液胞形成)が起こることが報告されており、そのことからClC-2チャネルが、他のK+チャネルとともに、細胞間隙中の細胞外イオン濃度の恒常性維持に関わっている可能性が示唆されている<ref name="ref1" />。ClC-2は細胞膨張により活性化しうることも知られているが、その後の細胞容積の復元への役割は、同時に活性化されるVSORに比して小さいことがClC-2 KOマウスで示されている。(なお、かつてヒトClC-2の遺伝子(CLCN-2)異常は特発性全般性てんかんの原因となりうることが報告されたが、そのClC-2変異体の機能解析の結果、現在その報告に対しては否定的な見解が占める。)  


==== ClC-3・-4・-6・-7  ====
==== ClC-3・-4・-6・-7  ====
115行目: 115行目:
=== カルシウム依存性塩素チャネル  ===
=== カルシウム依存性塩素チャネル  ===


 Ano1/TMEM16Aが発現する後根神経節細胞は細胞内Cl<sup>–</sup>濃度が高く(&gt;30 mM)、古くからCaCC活性化による活動電位の後脱分極相の形成が知られている。即ち、この神経でのAno1/TMEM16Aの活性化は膜興奮性を高め、それが例えば発痛物質ブラジキニンの作用後の細胞内Ca<sup>2+</sup>濃度上昇に伴う痛覚神経の発火頻度上昇に関わることが知られている<ref name=ref13><pubmed>20335661</pubmed></ref>。また、嗅神経の嗅毛では、におい物質のGタンパク質共役型受容体への結合により、cAMP依存性陽イオンチャネルとともにAno2/TMEM16Bが活性化され、ともに脱分極性の電流をもたらすことで嗅神経の発火を誘起することが知られている。但し、Ano2/TMEM16B KOマウスでそのCaCC成分が消失しても、嗅覚自体にはそれほど強い影響を与えないことも報告されている<ref name=ref14><pubmed>21516098</pubmed></ref>。一方、細胞内Cl–濃度が低い(&lt;10 mM)多くの成熟神経細胞では、CaCC活性は膜興奮性を抑制する。例えば海馬の錐体細胞では、活動電位中のCa<sup>2+</sup>流入により活性化されたAno2/TMEM16Bによる活動電位の再分極の促進や、興奮性シナプス入力時のCa<sup>2+</sup>流入により活性化されたAno2/TMEM16Bによるシナプス後電位の抑制が認められている<ref name=ref15><pubmed>22500639</pubmed></ref>。 <br> Best1については、近年アストログリアの主なCaCCであると報告されると同時に、同チャネルを通じてグルタミン酸やGABAがアストログリアから周囲に放出されることにより、シナプス機能や神経興奮性の調節が行われるとの報告がなされた<ref name=ref16><pubmed>20929730</pubmed></ref><ref name=ref17><pubmed>23021213</pubmed></ref>。Best2はかつて嗅神経でのCaCC候補の1つであったが、Best2 KOマウスとWTマウスでCaCCに大きな相違が認められず、後に嗅神経でのCaCCは上記のようにAno2/TMEM16Bによることが確定している。Best3・Best4の神経系での機能は未だ調べられていない。BestrophinチャネルはHCO3<sup>–</sup>に対する透過性が高く、またL型電位依存性Ca<sup>2+</sup>チャネルとの相互作用を介してCa<sup>2+</sup>流入量も変化させうることから、細胞内Ca<sup>2+</sup>動態やpHの恒常性維持にも寄与している可能性が示唆されている<ref name=ref3 /><ref name=ref4 />。  
 Ano1/TMEM16Aが発現する後根神経節細胞は細胞内Cl<sup>–</sup>濃度が高く(&gt;30 mM)、古くからCaCC活性化による活動電位の後脱分極相の形成が知られている。即ち、この神経でのAno1/TMEM16Aの活性化は膜興奮性を高め、それが例えば発痛物質ブラジキニンの作用後の細胞内Ca<sup>2+</sup>濃度上昇に伴う痛覚神経の発火頻度上昇に関わることが知られている<ref name="ref13"><pubmed>20335661</pubmed></ref>。また、嗅神経の嗅毛では、におい物質のGタンパク質共役型受容体への結合により、cAMP依存性陽イオンチャネルとともにAno2/TMEM16Bが活性化され、ともに脱分極性の電流をもたらすことで嗅神経の発火を誘起することが知られている。但し、Ano2/TMEM16B KOマウスでそのCaCC成分が消失しても、嗅覚自体にはそれほど強い影響を与えないことも報告されている<ref name="ref14"><pubmed>21516098</pubmed></ref>。一方、細胞内Cl–濃度が低い(&lt;10 mM)多くの成熟神経細胞では、CaCC活性は膜興奮性を抑制する。例えば海馬の錐体細胞では、活動電位中のCa<sup>2+</sup>流入により活性化されたAno2/TMEM16Bによる活動電位の再分極の促進や、興奮性シナプス入力時のCa<sup>2+</sup>流入により活性化されたAno2/TMEM16Bによるシナプス後電位の抑制が認められている<ref name="ref15"><pubmed>22500639</pubmed></ref>。 <br> Best1については、近年アストログリアの主なCaCCであると報告されると同時に、同チャネルを通じてグルタミン酸やGABAがアストログリアから周囲に放出されることにより、シナプス機能や神経興奮性の調節が行われるとの報告がなされた<ref name="ref16"><pubmed>20929730</pubmed></ref><ref name="ref17"><pubmed>23021213</pubmed></ref>。Best2はかつて嗅神経でのCaCC候補の1つであったが、Best2 KOマウスとWTマウスでCaCCに大きな相違が認められず、後に嗅神経でのCaCCは上記のようにAno2/TMEM16Bによることが確定している。Best3・Best4の神経系での機能は未だ調べられていない。BestrophinチャネルはHCO3<sup>–</sup>に対する透過性が高く、またL型電位依存性Ca<sup>2+</sup>チャネルとの相互作用を介してCa<sup>2+</sup>流入量も変化させうることから、細胞内Ca<sup>2+</sup>動態やpHの恒常性維持にも寄与している可能性が示唆されている<ref name="ref3" /><ref name="ref4" />。  


<br>  
<br>  
121行目: 121行目:
=== 細胞容積感受性塩素チャネル  ===
=== 細胞容積感受性塩素チャネル  ===


 細胞膨張時の細胞容積感受性塩素チャネル活性化の主たる役割は、細胞内Cl<sup>–</sup>の流出を促して細胞内浸透圧を減少させることにより、細胞容積を元の大きさに戻すこと(調節性容積減少; regulatory volume decrease; RVD)である。但し、その達成にはK+流出も同時に起こって電気的中性が保たれることで、持続的な正味の溶質(KCl)の流出が起こる必要がある。生理的範囲の神経活動においても、高頻度神経発火中は神経細胞内に向かって正味NaClの流入が起こり、また活動電位の再分極中に神経から放出されたK<sup>+</sup>がCl<sup>–</sup>とともに隣接するアストログリアに流入することで、双方の細胞とも膨張しうるが、細胞容積感受性塩素チャネルはそれらの膨張の緩和及び容積の復旧に関わると考えられる。<br> VSORは細胞膨張時のみならず、種々の受容体刺激を通じて細胞膨張を伴わずに活性化されうることが知られている。その場合は同様に細胞内溶質が流出することにより、細胞容積の縮小が誘起される。この機序はアポトーシスの必要条件となっていることが知られている[5]。また、近年この受容体刺激を介するVSOR活性化は、1細胞上で局所的に誘導されうることが判明し<ref name=ref18><pubmed>21690189</pubmed></ref>、VSOR活性化が局所的な容積調節を伴う細胞の形態変化や移動を駆動する役割を持つことも示唆されている。<br> また、VSORはグルタミン酸、マキシアニオンチャネルはグルタミン酸及びATPに対する透過性を持つことから、これらは細胞間情報伝達にも寄与しうることも知られている<ref name=ref5 /><ref name=ref6 />。  
 細胞膨張時の細胞容積感受性塩素チャネル活性化の主たる役割は、細胞内Cl<sup>–</sup>の流出を促して細胞内浸透圧を減少させることにより、細胞容積を元の大きさに戻すこと(調節性容積減少; regulatory volume decrease; RVD)である。但し、その達成にはK+流出も同時に起こって電気的中性が保たれることで、持続的な正味の溶質(KCl)の流出が起こる必要がある。生理的範囲の神経活動においても、高頻度神経発火中は神経細胞内に向かって正味NaClの流入が起こり、また活動電位の再分極中に神経から放出されたK<sup>+</sup>がCl<sup>–</sup>とともに隣接するアストログリアに流入することで、双方の細胞とも膨張しうるが、細胞容積感受性塩素チャネルはそれらの膨張の緩和及び容積の復旧に関わると考えられる。<br> VSORは細胞膨張時のみならず、種々の受容体刺激を通じて細胞膨張を伴わずに活性化されうることが知られている。その場合は同様に細胞内溶質が流出することにより、細胞容積の縮小が誘起される。この機序はアポトーシスの必要条件となっていることが知られている[5]。また、近年この受容体刺激を介するVSOR活性化は、1細胞上で局所的に誘導されうることが判明し<ref name="ref18"><pubmed>21690189</pubmed></ref>、VSOR活性化が局所的な容積調節を伴う細胞の形態変化や移動を駆動する役割を持つことも示唆されている。<br> また、VSORはグルタミン酸、マキシアニオンチャネルはグルタミン酸及びATPに対する透過性を持つことから、これらは細胞間情報伝達にも寄与しうることも知られている<ref name="ref5" /><ref name="ref6" />。  


<br>  
<br>  
179行目: 179行目:
|}
|}


9-AC:anthracene-9-carboxylate<br>DCPIB:4-(2-butyl-6,7-dichloro-2-cyclopentylindan-1-on-5-yl)oxybutyric acid<br>DIDS:4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid<br>DNDS:4,4'-dinitrostilbene-2,2'-disulfonate<br>DPC:diphenylamine-2-carboxylate<br>IAA-94:indanyloxyacetic acid 94<br>n.d.:未定または検出できず(not determined or detected)<br>NFA:niflumic acid<br>NPPB:5-nitro-2-(3-phenylpropylamino)benzoic acid<br>SITS:4-acetamido-4′-isothiocyanato-2,2′-stilbenedisulfonic acid
9-AC:anthracene-9-carboxylate<br>DCPIB:4-(2-butyl-6,7-dichloro-2-cyclopentylindan-1-on-5-yl)oxybutyric acid<br>DIDS:4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid<br>DNDS:4,4'-dinitrostilbene-2,2'-disulfonate<br>DPC:diphenylamine-2-carboxylate<br>IAA-94:indanyloxyacetic acid 94<br>n.d.:未定または検出できず(not determined or detected)<br>NFA:niflumic acid<br>NPPB:5-nitro-2-(3-phenylpropylamino)benzoic acid<br>SITS:4-acetamido-4′-isothiocyanato-2,2′-stilbenedisulfonic acid <br> <br>  
<br>
 
<br>
== 参考文献 ==
==参考文献==
 
<references /><br>  
<references /><br>  


79

回編集