93
回編集
Masanoritachikawa (トーク | 投稿記録) 細編集の要約なし |
Masanoritachikawa (トーク | 投稿記録) 細編集の要約なし |
||
11行目: | 11行目: | ||
== 構造と役割 == | == 構造と役割 == | ||
[[Image:Tachikawa fig 1.jpg|thumb| | [[Image:Tachikawa fig 1.jpg|thumb|500px|図1 血液脳関門(Blood-brain barrier, BBB)の解剖学的実体]] | ||
脳は、高度な神経活動のためシナプス周辺の環境が、BBBによって厳密に制御されている。BBBの解剖学的実体は脳毛細血管であり、内皮細胞同士が密着結合(tight junction)で連結している (図1)。密着結合構成タンパク質には、クローディン、オクルディンなどが知られている。一部の内皮細胞には、周皮細胞pericyteが接着し、その大部分を星状膠細胞の足突起が覆っている (図1)。このようなBBBの構造的特徴によって、血液構成成分や投与薬物の内皮細胞間隙を介した非特異的な中枢への侵入や、脳内産生物質の流出を阻止している。ただし例外的として、終校器官、脳弓下器官、交連下器官、視床下部正中隆起、松果体、下垂体後葉、最終野では、毛細血管内皮細胞が密着結合で連結していないため、末梢血管と同様に血液とこれらの組織間の物質の移動は比較的自由である。これは、ゴールドマンがトリパンブルーを血管内に投与した実験において、一部の脳内部位が染色された要因であった可能性が高い。ヒトの脳毛細血管の全長は約650km、表面積は約9m<sup>2</sup>である一方、全脳に占める脳毛細血管内皮細胞の容積はわずか0.1%である。脳の毛細血管は平均40µmの間隔で網目状に張り巡らされていることから、分子量数百程度の物質は脳毛細血管を通過後、速やかに拡散して、脳実質細胞に到達可能である。血液と脳実質細胞間液の物質交換は、様々な輸送システムによって制御されている (図2)。この輸送系の分子的実体は、多様なトランスポーターや受容体、及びその複合体であり、脳毛細血管内皮細胞の脳血液側と脳側の細胞膜に極性をもって発現する。トランスポーターは、脳血液側と脳側の細胞膜のどちらか一方又は、両方の細胞膜に局在し、細胞外から細胞内、又は細胞内から細胞外へ、特定の基質を輸送する能力を有している。トランスポーターは、大きく2つのファミリーに分類される。1つは、ATP-binding cassette (ABC) transporterファミリーで、ATPの加水分解エネルギーを直接利用して、主に細胞内から細胞外への輸送を担う。 もう1つは、solute carrier (SLC)ファミリーで、エネルギーを消費しないで濃度勾配に従って下り坂輸送を行う促進拡散や、無機イオンや有機イオンの濃度勾配を利用して、濃度勾配に逆らった基質輸送を行う2次性能動輸送に関与する。受容体はトランスサイトーシスによって、リガンドを輸送する機能を有している。これらのトランスポーターや受容体が協同的に働くことによって、循環血液から脳への供給方向及び、脳から循環血液への排出方向の物質のベクトル輸送を厳密に制御している。 | 脳は、高度な神経活動のためシナプス周辺の環境が、BBBによって厳密に制御されている。BBBの解剖学的実体は脳毛細血管であり、内皮細胞同士が密着結合(tight junction)で連結している (図1)。密着結合構成タンパク質には、クローディン、オクルディンなどが知られている。一部の内皮細胞には、周皮細胞pericyteが接着し、その大部分を星状膠細胞の足突起が覆っている (図1)。このようなBBBの構造的特徴によって、血液構成成分や投与薬物の内皮細胞間隙を介した非特異的な中枢への侵入や、脳内産生物質の流出を阻止している。ただし例外的として、終校器官、脳弓下器官、交連下器官、視床下部正中隆起、松果体、下垂体後葉、最終野では、毛細血管内皮細胞が密着結合で連結していないため、末梢血管と同様に血液とこれらの組織間の物質の移動は比較的自由である。これは、ゴールドマンがトリパンブルーを血管内に投与した実験において、一部の脳内部位が染色された要因であった可能性が高い。ヒトの脳毛細血管の全長は約650km、表面積は約9m<sup>2</sup>である一方、全脳に占める脳毛細血管内皮細胞の容積はわずか0.1%である。脳の毛細血管は平均40µmの間隔で網目状に張り巡らされていることから、分子量数百程度の物質は脳毛細血管を通過後、速やかに拡散して、脳実質細胞に到達可能である。血液と脳実質細胞間液の物質交換は、様々な輸送システムによって制御されている (図2)。この輸送系の分子的実体は、多様なトランスポーターや受容体、及びその複合体であり、脳毛細血管内皮細胞の脳血液側と脳側の細胞膜に極性をもって発現する。トランスポーターは、脳血液側と脳側の細胞膜のどちらか一方又は、両方の細胞膜に局在し、細胞外から細胞内、又は細胞内から細胞外へ、特定の基質を輸送する能力を有している。トランスポーターは、大きく2つのファミリーに分類される。1つは、ATP-binding cassette (ABC) transporterファミリーで、ATPの加水分解エネルギーを直接利用して、主に細胞内から細胞外への輸送を担う。 もう1つは、solute carrier (SLC)ファミリーで、エネルギーを消費しないで濃度勾配に従って下り坂輸送を行う促進拡散や、無機イオンや有機イオンの濃度勾配を利用して、濃度勾配に逆らった基質輸送を行う2次性能動輸送に関与する。受容体はトランスサイトーシスによって、リガンドを輸送する機能を有している。これらのトランスポーターや受容体が協同的に働くことによって、循環血液から脳への供給方向及び、脳から循環血液への排出方向の物質のベクトル輸送を厳密に制御している。 | ||
[[Image:Tachikawa fig 2.jpg|thumb| | [[Image:Tachikawa fig 2.jpg|thumb|500px|図2 血液脳関門(Blood-brain barrier, BBB)における物質輸送システム (SLCトランスポーター, Solute carrierファミリートランスポーター ; ABCトランスポーター, ATP-binding cassetteトランスポーター)]] | ||
== 内因性物質の輸送システム == | == 内因性物質の輸送システム == | ||
[[Image:Tachikawa fig 3.jpg|thumb| | [[Image:Tachikawa fig 3.jpg|thumb|500px|図3 血液脳関門(Blood-brain barrier, BBB)における内因性物質及び薬物の輸送システム (主にげっ歯類で明らかにされているトランスポーター・受容体の局在と機能を示した。)]] | ||
図3(a)-(c)に、BBBにおける内因性物質の輸送システムをまとめた<ref name="ref1" /><ref name="ref3"><pubmed> 23399670 </pubmed></ref>。BBB供給輸送系の最も重要な役割の一つは、エネルギー源となるグルコースや乳酸及びタンパク質や神経伝達物質の原料となるアミノ酸の循環血液から脳への供給である。グルコーストランスポーター 1 (GLUT1/SLC2A1)は、促進拡散型のトランスポーターで、脳毛細血管内皮細胞の両側の細胞膜に局在し、循環血液中から脳方向へのグルコースの供給輸送を担う。この他、モノカルボン酸トランスポーター (MCT1/SLC16A1) は、乳酸などのケトン体エネルギー源の供給に関与し、L型アミノ酸トランスポーター(LAT1/SLC7A5)は、4F2抗原重鎖4F2hc (CD98/SLC3A2)とヘテロダイマーを形成して、主にチロシンやフェニルアラニンなどの大型の中性アミノ酸を脳内に供給する役割を果たす。この他に、エネルギー貯蔵物質クレアチン、浸透圧調節物質タウリンの輸送系などが知られている。<br>BBB排出輸送系の主要な役割は、脳内で産生される神経伝達物質、メディエーターや代謝物の循環血液中へのくみ出しであり、SLCファミリーである神経伝達物質トランスポーター、アミノ酸トランスポーター、有機アニオントランスポーターや、ABCトランスポーターファミリーであるMRP4などがそれぞれ関与している。これらの輸送系は、脳細胞間隙中の神経伝達物質の第二のクリアランス機構や、脳内不要物質の脳内蓄積を防止する機構として、機能している。さらに、BBBには、アルツハイマー病で脳内に蓄積するベータ-アミロイド(1-40)の排出輸送系が存在する)<ref><pubmed> 17908238 </pubmed></ref><ref><pubmed> 16926058 </pubmed></ref><ref><pubmed> 20367755 </pubmed></ref>。この分子的実体には、P-糖タンパク<ref><pubmed> 16239972 </pubmed></ref>、BCRP<ref><pubmed> 19403814 </pubmed></ref>、lipoprotein receptor related protein-1(LRP-1) <ref><pubmed> 11120756 </pubmed></ref>など諸説あるが、現時点で結論が出ていない。 | 図3(a)-(c)に、BBBにおける内因性物質の輸送システムをまとめた<ref name="ref1" /><ref name="ref3"><pubmed> 23399670 </pubmed></ref>。BBB供給輸送系の最も重要な役割の一つは、エネルギー源となるグルコースや乳酸及びタンパク質や神経伝達物質の原料となるアミノ酸の循環血液から脳への供給である。グルコーストランスポーター 1 (GLUT1/SLC2A1)は、促進拡散型のトランスポーターで、脳毛細血管内皮細胞の両側の細胞膜に局在し、循環血液中から脳方向へのグルコースの供給輸送を担う。この他、モノカルボン酸トランスポーター (MCT1/SLC16A1) は、乳酸などのケトン体エネルギー源の供給に関与し、L型アミノ酸トランスポーター(LAT1/SLC7A5)は、4F2抗原重鎖4F2hc (CD98/SLC3A2)とヘテロダイマーを形成して、主にチロシンやフェニルアラニンなどの大型の中性アミノ酸を脳内に供給する役割を果たす。この他に、エネルギー貯蔵物質クレアチン、浸透圧調節物質タウリンの輸送系などが知られている。<br>BBB排出輸送系の主要な役割は、脳内で産生される神経伝達物質、メディエーターや代謝物の循環血液中へのくみ出しであり、SLCファミリーである神経伝達物質トランスポーター、アミノ酸トランスポーター、有機アニオントランスポーターや、ABCトランスポーターファミリーであるMRP4などがそれぞれ関与している。これらの輸送系は、脳細胞間隙中の神経伝達物質の第二のクリアランス機構や、脳内不要物質の脳内蓄積を防止する機構として、機能している。さらに、BBBには、アルツハイマー病で脳内に蓄積するベータ-アミロイド(1-40)の排出輸送系が存在する)<ref><pubmed> 17908238 </pubmed></ref><ref><pubmed> 16926058 </pubmed></ref><ref><pubmed> 20367755 </pubmed></ref>。この分子的実体には、P-糖タンパク<ref><pubmed> 16239972 </pubmed></ref>、BCRP<ref><pubmed> 19403814 </pubmed></ref>、lipoprotein receptor related protein-1(LRP-1) <ref><pubmed> 11120756 </pubmed></ref>など諸説あるが、現時点で結論が出ていない。 | ||
29行目: | 29行目: | ||
== 実験手法 == | == 実験手法 == | ||
[[Image:Tachikawa table 1.jpg|thumb| | [[Image:Tachikawa table 1.jpg|thumb|500px|表1 血液脳関門(Blood-brain barrier, BBB)輸送機能研究の実験手法]] | ||
表1に、BBB研究で用いられる実験手法をまとめた。BBBにおける輸送システムを解明する研究は、functional genomicsを背景に、多様な実験手法が開発されたことで飛躍的に進んだ。主な研究手法は、以下の様に大別される。詳細は、総説<ref>'''寺崎哲也,大槻純男,上家潤一'''<br>3. 薬効組織(脳、腫瘍)への輸送特性の評価 1) 血液脳関門の透過性の評価 7:170-177 遺伝子医学MOOK 最新創薬学2007, <br>''メディカル ドゥ'':2007</ref>を参照されたい。 | 表1に、BBB研究で用いられる実験手法をまとめた。BBBにおける輸送システムを解明する研究は、functional genomicsを背景に、多様な実験手法が開発されたことで飛躍的に進んだ。主な研究手法は、以下の様に大別される。詳細は、総説<ref>'''寺崎哲也,大槻純男,上家潤一'''<br>3. 薬効組織(脳、腫瘍)への輸送特性の評価 1) 血液脳関門の透過性の評価 7:170-177 遺伝子医学MOOK 最新創薬学2007, <br>''メディカル ドゥ'':2007</ref>を参照されたい。 |
回編集