「プロテアソーム」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
24行目: 24行目:
 RP(別称:PA700)はlid(蓋部)とbase(基底部)から構成されており,lid複合体とbase複合体は、夫々10個と9個のサブユニットから構成されている。ごく最近、二つのユビキチンリセプターRpn10とRpn13は分子表面の離れた位置に存在してユビキチン化タンパク質を補足していることが判明した<ref name=ref11><pubmed>22215586</pubmed></ref>。RPにはポリユビキチン鎖を根本から切断して解離するRpn11とそれ以外に末端からユビキチンを1個ずつ解離させる酵素USP14(酵母のUbp6)とUch37(酵母には存在しない)の3つのDUBが存在する。ごく最近、lidサブユニット群の位置情報がCryo-EMよる解析から明らかにされた<ref name=ref12><pubmed>22237024</pubmed></ref>。またbaseは6種のAAA型ATPaseサブユニット(Rpt1〜Rpt6)を含んでおり、この冠(Crown)型構造のATPaseリングは,CPのαリングと結合してその中央部のゲートを開き,基質タンパク質の通過を可能にさせる機能を有している他、ATPの加水分解エネルギーを利用してタンパク質の3次元構造を破壊(アンフォールディング)し,変性した基質がαリングを通ってβリングの内部に到達できるようにするアンチシャペロン作用を持っている<ref name=ref13><pubmed>19489727</pubmed></ref> <ref name=ref14><pubmed>17889660</pubmed></ref> <ref name=ref15><pubmed>21335235</pubmed></ref>。このプロテアソームの作動機構を図3に模式化して示した。
 RP(別称:PA700)はlid(蓋部)とbase(基底部)から構成されており,lid複合体とbase複合体は、夫々10個と9個のサブユニットから構成されている。ごく最近、二つのユビキチンリセプターRpn10とRpn13は分子表面の離れた位置に存在してユビキチン化タンパク質を補足していることが判明した<ref name=ref11><pubmed>22215586</pubmed></ref>。RPにはポリユビキチン鎖を根本から切断して解離するRpn11とそれ以外に末端からユビキチンを1個ずつ解離させる酵素USP14(酵母のUbp6)とUch37(酵母には存在しない)の3つのDUBが存在する。ごく最近、lidサブユニット群の位置情報がCryo-EMよる解析から明らかにされた<ref name=ref12><pubmed>22237024</pubmed></ref>。またbaseは6種のAAA型ATPaseサブユニット(Rpt1〜Rpt6)を含んでおり、この冠(Crown)型構造のATPaseリングは,CPのαリングと結合してその中央部のゲートを開き,基質タンパク質の通過を可能にさせる機能を有している他、ATPの加水分解エネルギーを利用してタンパク質の3次元構造を破壊(アンフォールディング)し,変性した基質がαリングを通ってβリングの内部に到達できるようにするアンチシャペロン作用を持っている<ref name=ref13><pubmed>19489727</pubmed></ref> <ref name=ref14><pubmed>17889660</pubmed></ref> <ref name=ref15><pubmed>21335235</pubmed></ref>。このプロテアソームの作動機構を図3に模式化して示した。


 他方、RP/PA700以外の活性化因子としては、PA28(α,β,γの3種のファミリーを構成)が存在する他<ref name=ref><pubmed></pubmed></ref> <ref name=ref><pubmed></pubmed></ref>[16, 17]、20Sプロテアソームの両端にPA700とPA28の両調節ユニットを併せ持った“ハイブリッドプロテアソーム”も存在する<ref name=ref><pubmed></pubmed></ref>[18]。ヘテロ7量体のPA28α/β(細胞質局在)はIFNγによって強く誘導され、内在性抗原のプロセッシングに関与している。ホモ7量体を形成しているPA28γ(核局在)の欠損マウスは成長が遅延する。さらにPA200と名付けられた活性化因子が酵母からヒトまで普遍的に存在するが、その役割は諸説あって確定していない<ref name=ref><pubmed></pubmed></ref>[19]。また20Sプロテアソームが上記の活性化因子の介在なしに単独で、天然変成タンパク質や酸化修飾タンパク質を直接分解することも報告されている<ref name=ref><pubmed></pubmed></ref> <ref name=ref><pubmed></pubmed></ref>[20, 21]。このようにプロテアソームの作動機構は、複雑かつ多様である。
 他方、RP/PA700以外の活性化因子としては、PA28(α,β,γの3種のファミリーを構成)が存在する他<ref name=ref16><pubmed>10600633</pubmed></ref> <ref name=ref17><pubmed>21211719</pubmed></ref>、20Sプロテアソームの両端にPA700とPA28の両調節ユニットを併せ持った“ハイブリッドプロテアソーム”も存在する<ref name=ref18><pubmed>10799514</pubmed></ref>。ヘテロ7量体のPA28α/β(細胞質局在)はIFNγによって強く誘導され、内在性抗原のプロセッシングに関与している。ホモ7量体を形成しているPA28γ(核局在)の欠損マウスは成長が遅延する。さらにPA200と名付けられた活性化因子が酵母からヒトまで普遍的に存在するが、その役割は諸説あって確定していない<ref name=ref><pubmed>21389348</pubmed></ref>。また20Sプロテアソームが上記の活性化因子の介在なしに単独で、天然変成タンパク質や酸化修飾タンパク質を直接分解することも報告されている<ref name=ref20><pubmed>18636510</pubmed></ref> <ref name=ref21><pubmed>20498273</pubmed></ref>。このようにプロテアソームの作動機構は、複雑かつ多様である。
 
 
 プロテアソームは巨大で複雑な多成分複合体であり、その分子集合には専門的な多数のシャペロン分子が関与している(図4)<ref name=ref><pubmed></pubmed></ref> <ref name=ref><pubmed></pubmed></ref>[22, 23]。20Sプロテアソームの形成に特化した分子シャペロンであるPAC(Proteasome Assembling Chaperone)1-4は、生合成された7種のαサブユニットと階層性をもって結合し、αリングの形成を促進する。PAC1/PAC2ヘテロ二量体はαリング同士の凝集体の形成を阻止する働きを示し、PAC3/PAC4ヘテロ二量体はαリング上へのαサブユニットの段階的な会合を促進して、迅速に正確なαリングを形成させる。βサブユニット群は、逐次的にαリング上に会合してβリングを形成する。この段階的な会合にはβ2やβ5のプロペプチド及びβ2のC末端伸長領域などが“分子内シャペロン”として作用する<ref name=ref><pubmed></pubmed></ref>[22]。さらにもう一つのシャペロンUmp1/POMP/Proteassemblinは、βサブユニットの会合やハーフ・プロテアソームの重合プロセスに関与している<ref name=ref><pubmed></pubmed></ref> <ref name=ref><pubmed></pubmed></ref> <ref name=ref><pubmed></pubmed></ref>[22, 24]
 プロテアソームは巨大で複雑な多成分複合体であり、その分子集合には専門的な多数のシャペロン分子が関与している(図4)<ref name=ref22><pubmed>19165213</pubmed></ref> <ref name=ref23><pubmed>21461838</pubmed></ref>。20Sプロテアソームの形成に特化した分子シャペロンであるPAC(Proteasome Assembling Chaperone)1-4は、生合成された7種のαサブユニットと階層性をもって結合し、αリングの形成を促進する。PAC1/PAC2ヘテロ二量体はαリング同士の凝集体の形成を阻止する働きを示し、PAC3/PAC4ヘテロ二量体はαリング上へのαサブユニットの段階的な会合を促進して、迅速に正確なαリングを形成させる。βサブユニット群は、逐次的にαリング上に会合してβリングを形成する。この段階的な会合にはβ2やβ5のプロペプチド及びβ2のC末端伸長領域などが“分子内シャペロン”として作用する<ref name=ref22><pubmed>19165213</pubmed></ref>。さらにもう一つのシャペロンUmp1/POMP/Proteassemblinは、βサブユニットの会合やハーフ・プロテアソームの重合プロセスに関与している<ref name=ref22><pubmed>19165213</pubmed></ref> <ref name=ref24><pubmed>18786393</pubmed></ref>。
 
 
 一方、調節部位である 19S RPの分子集合機構についても、最近、baseを構成するATPase リングの分子集合に関与する4種のbaseシャペロン分子が発見された。これら4分子は、当初、プロテアソームと一時的に結合するタンパク質(proteasome-interacting proteins、 PIPs:数十個存在)として同定されていた分子群、即ちNas2/p27, Nas6/gankyrin=p28, Rpn14/PAAF1, and Hsm3/S5b(出芽酵母/ヒト)であった<ref name=ref><pubmed></pubmed></ref>[25](これらは最近、RP assembling chaperones RAC 1-4とも呼ばれている<ref name=ref><pubmed></pubmed></ref>[23])。またUBP6/USP14がユビキチン鎖のbase中間体への偶発的な結合を阻止し、base複合体の形成を促進していることも判明している<ref name=ref><pubmed></pubmed></ref>[26]
 一方、調節部位である 19S RPの分子集合機構についても、最近、baseを構成するATPase リングの分子集合に関与する4種のbaseシャペロン分子が発見された。これら4分子は、当初、プロテアソームと一時的に結合するタンパク質(proteasome-interacting proteins、 PIPs:数十個存在)として同定されていた分子群、即ちNas2/p27, Nas6/gankyrin=p28, Rpn14/PAAF1, and Hsm3/S5b(出芽酵母/ヒト)であった<ref name=ref25><pubmed>22350895</pubmed></ref>(これらは最近、RP assembling chaperones RAC 1-4とも呼ばれている<ref name=ref23 />)。またUBP6/USP14がユビキチン鎖のbase中間体への偶発的な結合を阻止し、base複合体の形成を促進していることも判明している<ref name=ref26><pubmed>21658604</pubmed></ref>。


== 生理 ==
== 生理 ==