「エンハンサー」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
21行目: 21行目:
 エンハンサーでは、ヒストンの翻訳後修飾が他の領域と異なり、ヒストンH3の4番目のリジンがモノメチル化またはジメチル化される(H3K4me1/ H3K4me2)<ref><pubmed>17277777</pubmed></ref>。また、H3.3やH2A.Zを含むヌクレオソームが存在し<ref><pubmed>19633671</pubmed></ref>、通常のヌクレオソームより不安定なため、転写活性化因子がDNAと容易に相互作用できると考えられている。ヒストンH3.3やH2A.Zを含むヌクレオソームは、プロモーターにも存在するが、ヒストンH3の4番目のリジンはトリメチル化されている(H3K4me3)。さらに、エンハンサーにおけるヒストンの修飾は機能の有無で変化することも知られている。例えば、ヒトES細胞では、エンハンサーが働いている時はヒストンH3の27番目のリジンがアセチル化されるが(H3K27ac)、機能していない時はメチル化される(H3K27me3)<ref><pubmed>21160473</pubmed></ref>。<br>  
 エンハンサーでは、ヒストンの翻訳後修飾が他の領域と異なり、ヒストンH3の4番目のリジンがモノメチル化またはジメチル化される(H3K4me1/ H3K4me2)<ref><pubmed>17277777</pubmed></ref>。また、H3.3やH2A.Zを含むヌクレオソームが存在し<ref><pubmed>19633671</pubmed></ref>、通常のヌクレオソームより不安定なため、転写活性化因子がDNAと容易に相互作用できると考えられている。ヒストンH3.3やH2A.Zを含むヌクレオソームは、プロモーターにも存在するが、ヒストンH3の4番目のリジンはトリメチル化されている(H3K4me3)。さらに、エンハンサーにおけるヒストンの修飾は機能の有無で変化することも知られている。例えば、ヒトES細胞では、エンハンサーが働いている時はヒストンH3の27番目のリジンがアセチル化されるが(H3K27ac)、機能していない時はメチル化される(H3K27me3)<ref><pubmed>21160473</pubmed></ref>。<br>  


 エンハンサーでは、enhancer RNA (eRNA)とよばれるRNAが双方向に転写されることがある<ref><pubmed>20393465</pubmed></ref>。eRNAはタンパク質をコードせず、ポリアデニル化されない。eRNA合成がエンハンサーの機能に必須な例として、転写活性化因子p53が結合するエンハンサーが明らかになっている<ref><pubmed>23273978</pubmed></ref>。しかし、全てのエンハンサーでeRNA合成が必要なのかはまだ不明である。一方、100塩基以上の長さを持つノンコーディングRNA(lncRNA)が転写を活性化する場合もある<ref><pubmed>20887892</pubmed></ref>。lncRNAのほとんどは、一方向に転写され、ポリアデニル化される。lncRNAが転写を活性化する詳しいメカニズムはまだよくわかっていない。ENCODEプロジェクトによって、ヒトでは9640のlncRNAが転写されることが明らかとなっている<ref><pubmed>22955616</pubmed></ref>。<br>  
 エンハンサーでは、enhancer RNA (eRNA)とよばれるRNAが双方向に転写されることがある<ref><pubmed>20393465</pubmed></ref>。eRNAはタンパク質をコードせず、ポリアデニル化されない。eRNA合成がエンハンサーの機能に必須な例として、転写活性化因子p53が結合するエンハンサーが明らかになっている<ref><pubmed>23273978</pubmed></ref>。しかし、全てのエンハンサーでeRNA合成が必要なのかはまだ不明である。一方、100塩基以上の長さを持ちポリアデニル化されるノンコーディングRNA(lncRNA)が転写を活性化する場合もある<ref><pubmed>20887892</pubmed></ref>。ENCODEプロジェクトにより、ヒトでは9640種のlncRNAが転写されることが明らかとなった<ref><pubmed>22955616</pubmed></ref>。<br>  


== 神経系におけるエンハンサー  ==
== 神経系におけるエンハンサー  ==
229

回編集