「ジャンクトフィリン」の版間の差分

編集の要約なし
74行目: 74行目:
 JP-3欠損マウスでは、[[運動協調能]]の軽微な異常が見られるものの<ref><pubmed>11906164</pubmed></ref>、両サブタイプの単独欠損マウスでは、顕著な異常は認められない。上述の両サブタイプの発現重複性と併せて考えると、両サブタイプ間の機能補完作用が示唆される。
 JP-3欠損マウスでは、[[運動協調能]]の軽微な異常が見られるものの<ref><pubmed>11906164</pubmed></ref>、両サブタイプの単独欠損マウスでは、顕著な異常は認められない。上述の両サブタイプの発現重複性と併せて考えると、両サブタイプ間の機能補完作用が示唆される。


 両サブタイプを同時に欠損するJP-3&amp;4二重欠損マウス(JP3&amp;4 double-knockout mouse; 以下JP-DKOマウス)は、固型飼料を用いた通常飼育条件下では、離乳時期に死亡する。しかし、ペースト状の練り餌で飼育すると、この致死性がほぼ完全に回避される。また尻尾を持ち上げた際、野生型マウスでは下肢が開くのに対し、JP-DKOマウスは下肢を結ぶしぐさ、いわゆる[[foot-clasping reflex]]と呼ばれる応答が出現する。この異常応答は、[[ハンチントン舞踏病]]モデルマウスにも観察される異常であるが、ヒトの遺伝性疾患である[[ハンチントン舞踏病類似疾患]]([[HDL2]])の原因として、JP3遺伝子への[[triplet repeat]]の伸長・挿入変異が見られることが報告されている。
 両サブタイプを同時に欠損するJP-3&amp;4二重欠損マウス(JP3&amp;4 double-knockout mouse; 以下JP-DKOマウス)は、固型飼料を用いた通常飼育条件下では、離乳時期に死亡する。しかし、ペースト状の練り餌で飼育すると、この致死性がほぼ完全に回避される。また尻尾を持ち上げた際、野生型マウスでは下肢が開くのに対し、JP-DKOマウスは下肢を結ぶしぐさ、いわゆる[[foot-clasping reflex]]と呼ばれる応答が出現する。この異常応答は、[[ハンチントン舞踏病]]モデルマウスにも観察される異常であるが、ヒトの遺伝性疾患である[[ハンチントン舞踏病類似疾患]]([[HDL2]])の原因として、JP3遺伝子への[[トリプレット病|トリプレット]]の伸長・挿入変異が見られることが報告されている。


 JP-3、JP-4の発現分布から推測されるとおり、JP-DKOマウスにおける海馬および小脳に関連した機能異常が、現在までに報告されている<ref name="ref5" />。  
 JP-3、JP-4の発現分布から推測されるとおり、JP-DKOマウスにおける海馬および小脳に関連した機能異常が、現在までに報告されている<ref name="ref5" />。  
85行目: 85行目:
 JP-DKOでは、[[回転棒テスト]]および小脳依存性の[[瞬膜反射条件付け学習]]において、明確な阻害が見られる。また、小脳運動学習の基盤とされる[[平行線維]]-[[プルキンエ細胞]]シナプスにおける[[長期抑圧]]([[long-term depression]]; 小脳[[LTD]])に関して、野生型において小脳LTDを誘導する刺激(登上線維刺激とプルキンエ細胞の脱分極との組み合わせ刺激)により、JP-DKO小脳スライスではLTPが誘導される(小脳LTDのLTP化)。[[登上線維]]刺激によりプルキンエ細胞ではcomplex spikeと言う複雑な脱分極性の電位応答が見られるが、この電位応答の脱分極相の後に続く[[遅い過分極応答]]([[slow afterhyperpolarization]]; [[sAHP]])が、JP-DKOプルキンエ細胞では欠損している。引き続き薬理学的な解析により、sAHPはSKチャネルを介し、プルキンエ細胞で優先的に発現するRyR1の活性化に依存することが示されたが、JP-DKOプルキンエ細胞では、SKチャネル阻害薬である[[apamin]]、およびRyR1を阻害するリアノジンもしくは[[dantrolene]]に感受性のあるsAHPが欠損している。さらに、登上線維刺激ではNMDA型グルタミン酸受容体が活性化されず、RyR1を活性化するカルシウム流入はP/Q型カルシウムチャネルを介すると考えられることから、JP-DKOプルキンエ細胞では、P/Q型カルシウムチャネル-RyR1-SHチャネルの機能的共役が阻害されていることが示唆された(図2)。さらに野生型マウスの小脳[[スライス標本]]においても、apamin投与により小脳LTDのLTP化が見られることから、JP-DKO小脳におけるLTDのLTP化の少なくとも一つの原因として、P/Q型カルシウムチャネル-RyR1-SHチャネル間の機能的共役の阻害によるsAHPの欠損が示唆された<ref><pubmed>17347645</pubmed></ref><ref><pubmed>17904530</pubmed></ref>。
 JP-DKOでは、[[回転棒テスト]]および小脳依存性の[[瞬膜反射条件付け学習]]において、明確な阻害が見られる。また、小脳運動学習の基盤とされる[[平行線維]]-[[プルキンエ細胞]]シナプスにおける[[長期抑圧]]([[long-term depression]]; 小脳[[LTD]])に関して、野生型において小脳LTDを誘導する刺激(登上線維刺激とプルキンエ細胞の脱分極との組み合わせ刺激)により、JP-DKO小脳スライスではLTPが誘導される(小脳LTDのLTP化)。[[登上線維]]刺激によりプルキンエ細胞ではcomplex spikeと言う複雑な脱分極性の電位応答が見られるが、この電位応答の脱分極相の後に続く[[遅い過分極応答]]([[slow afterhyperpolarization]]; [[sAHP]])が、JP-DKOプルキンエ細胞では欠損している。引き続き薬理学的な解析により、sAHPはSKチャネルを介し、プルキンエ細胞で優先的に発現するRyR1の活性化に依存することが示されたが、JP-DKOプルキンエ細胞では、SKチャネル阻害薬である[[apamin]]、およびRyR1を阻害するリアノジンもしくは[[dantrolene]]に感受性のあるsAHPが欠損している。さらに、登上線維刺激ではNMDA型グルタミン酸受容体が活性化されず、RyR1を活性化するカルシウム流入はP/Q型カルシウムチャネルを介すると考えられることから、JP-DKOプルキンエ細胞では、P/Q型カルシウムチャネル-RyR1-SHチャネルの機能的共役が阻害されていることが示唆された(図2)。さらに野生型マウスの小脳[[スライス標本]]においても、apamin投与により小脳LTDのLTP化が見られることから、JP-DKO小脳におけるLTDのLTP化の少なくとも一つの原因として、P/Q型カルシウムチャネル-RyR1-SHチャネル間の機能的共役の阻害によるsAHPの欠損が示唆された<ref><pubmed>17347645</pubmed></ref><ref><pubmed>17904530</pubmed></ref>。


 脳におけるRyRの機能については、RyR1やRyR2の遺伝子欠損マウスが、それぞれ出生致死<ref><pubmed>7515481</pubmed></ref>、胎生致死<ref><pubmed>9628868</pubmed></ref>を示すこと、さらに多くの神経細胞で複数のRyRサブタイプの発現が重複して見られることから、RyR遺伝子欠損動物を用いたアプローチでは解明が困難であった。しかし、JP-DKOマウスを用いた解析により、JP自身のチャネル間の機能的共役に関する機能的役割が明らかになっただけでなく、脳におけるRyRの機能についても知見が得られたことは特筆に値する。  
 脳におけるRyRの機能については、RyR1やRyR2の遺伝子欠損マウスが、それぞれ出生致死<ref><pubmed>7515481</pubmed></ref>、胎生致死<ref><pubmed>9628868</pubmed></ref>を示すこと、さらに多くの神経細胞で複数のRyRサブタイプの発現が重複して見られることから、RyR遺伝子欠損動物を用いたアプローチでは解明が困難であった。しかし、JP-DKOマウスを用いた解析により、JP自身のチャネル間の機能的共役に関する機能的役割が明らかになっただけでなく、脳におけるRyRの機能についても知見が得られたことは特筆に値する。


== 関連項目  ==
== 関連項目  ==