「エピジェネティクス」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
5行目: 5行目:
== 歴史、経緯 ==
== 歴史、経緯 ==


 紀元前より、発生を説明する仮説として、[[wikipedia:ja:受精|受精]]前にすでに複雑な成体の原型が存在しているという説(前成説)と、単純な形の[[wikipedia:ja:受精卵|受精卵]]が徐々に[[分化]]することで複雑な[[wikipedia:ja:器官|器官]]が作られるという説(後成説、epigenesis)があった。20世紀半ば、イギリスの発生学者の[[wikipedia:Conrad Hal Waddington|Waddington]]は、遺伝要因と環境要因が相互作用し最終的な生物を形成する過程、すなわち後成説をエピジェネティクスとして提唱した。彼は、受精卵を斜面から転がり落ちるボールに例えて、正常な発生の過程で受精卵は決して元の状態に戻ることはなく、またほかの細胞に転換することもないというエピジェネティック・ランドスケープを提唱した<ref>'''Waddington CH'''<br>The Strategy of the Genes: a Discussion of Some Aspects of Theoretical Biology<br>'' Allen & Unwin (London)'':1957</ref>。一方、1958年にDavid Nanneyが、エピジェネティクスを、体細胞分裂と減数分裂において伝達されうる遺伝子機能の多様性のうち、DNA配列の違いによって説明できないものについての研究と定義し<ref><pubmed> 16590265 </pubmed></ref>、これがRiggsの定義<ref>'''Riggs AD, Russo VEA, Martienssen RA'''<br>Epigenetic mechanisms of gene regulation<br>''Plainview, N.Y: Cold Spring Harbor Laboratory Press'':1996</ref>に受け継がれている。しかしながら、DNAメチル化が細胞分裂において維持されるメカニズムが解明されている一方、現在エピジェネティクス研究の中心的課題の一つであるヒストン修飾が細胞から細胞に伝達されるメカニズムは知られていない。最近では、エピジェネティクスをより幅広く捉えて研究する傾向が強まっており、バードは、エピジェネティクスを「活動状態変化を記録し、伝え、永続させるような、染色体領域の構造的な順応」と定義している<ref><pubmed> 17522671 </pubmed></ref>。     
 紀元前より、発生を説明する仮説として、[[wikipedia:ja:受精|受精]]前にすでに複雑な成体の原型が存在しているという説(前成説)と、単純な形の[[wikipedia:ja:受精卵|受精卵]]が徐々に[[分化]]することで複雑な[[wikipedia:ja:器官|器官]]が作られるという説(後成説、epigenesis)があった。20世紀半ば、イギリスの発生学者の[[wikipedia:Conrad Hal Waddington|Waddington]]は、遺伝要因と環境要因が相互作用し最終的な生物を形成する過程、すなわち後成説をエピジェネティクスとして提唱した。彼は、受精卵を斜面から転がり落ちるボールに例えて、正常な発生の過程で受精卵は決して元の状態に戻ることはなく、またほかの細胞に転換することもないというエピジェネティック・ランドスケープを提唱した<ref>'''Waddington CH'''<br>The Strategy of the Genes: a Discussion of Some Aspects of Theoretical Biology<br>'' Allen & Unwin (London)'':1957</ref>。一方、1958年にDavid Nanneyが、エピジェネティクスを、体細胞分裂と減数分裂において伝達されうる遺伝子機能の多様性のうち、DNA配列の違いによって説明できないものについての研究と定義し<ref><pubmed> 16590265 </pubmed></ref>、これがRiggsの定義<ref>'''Riggs AD, Russo VEA, Martienssen RA'''<br>Epigenetic mechanisms of gene regulation<br>''Plainview, N.Y: Cold Spring Harbor Laboratory Press'':1996</ref>に受け継がれている。しかしながら、DNAメチル化が細胞分裂において維持されるメカニズムが解明されている一方、現在エピジェネティクス研究の中心的課題の一つであるヒストン修飾が細胞から細胞に伝達されるメカニズムは知られていない。最近では、エピジェネティクスをより幅広く捉えて研究する傾向が強まっており、Birdは、エピジェネティクスを「活動状態変化を記録し、伝え、永続させるような、染色体領域の構造的な順応」と定義している<ref><pubmed> 17522671 </pubmed></ref>。     


== DNAメチル化 ==
== DNAメチル化 ==
20行目: 20行目:


 DNAメチル化が重要となる現象の例に、[[ゲノム刷り込み]] ([[genomic imprinting]])、転移因子の抑制、X染色体の不活化などがある。
 DNAメチル化が重要となる現象の例に、[[ゲノム刷り込み]] ([[genomic imprinting]])、転移因子の抑制、X染色体の不活化などがある。
 
 
 多くの場合、父親由来の[[wikipedia:ja:染色体|染色体]]上の遺伝子と母親由来の遺伝子の発現量はほぼ等しいが、インプリンティング遺伝子の場合、一方の遺伝子は発現するもののもう一方からの発現は抑制される。これらの遺伝子は近傍に[[wikipedia:imprinting control region|imprinting control region]] (ICR) と呼ばれる領域を持つことが多く、どちらかの親由来のアレルが高メチル化、もう片親由来のアレルが低メチル化を示す[[wikipedia:differentially methylated region|differentially methylated region]] (DMR)を含む事が多い<ref><pubmed> 12869525 </pubmed></ref>。ゲノム上の[[wikipedia:ja:反復配列|反復配列]]や[[wikipedia:ja:転移因子|転移因子]]([[wikipedia:ja:トランスポゾン|トランスポゾン]])様配列は一般的にメチル化され転写が抑制された状態にある。これは、染色体の安定化に寄与していると考えられている<ref name="ref5" />。また、[[wikipedia:ja:哺乳類|哺乳類]]における[[wikipedia:ja:遺伝子量補正|遺伝子量補正]](gene dosage compensation)の機構として、[[wikipedia:ja:女性|女性]]の2本ある[[wikipedia:ja:X染色体|X染色体]]のうちの1本は転写が不活性化([[wikipedia:X chromosome inactivation|X chromosome inactivation]])され高メチル化された状態にある<ref><pubmed> 22619385 </pubmed></ref>。不活性化されたX染色体は[[wikipedia:ja:バー小体|バー小体]](Barr body)という特徴的な構造を示す。
 多くの場合、父親由来の[[wikipedia:ja:染色体|染色体]]上の遺伝子と母親由来の遺伝子の発現量はほぼ等しいが、インプリンティング遺伝子の場合、一方の遺伝子は発現するもののもう一方からの発現は抑制される。これらの遺伝子は近傍に[[wikipedia:imprinting control region|imprinting control region]] (ICR) と呼ばれる領域を持つことが多く、どちらかの親由来のアレルが高メチル化、もう片親由来のアレルが低メチル化を示す[[wikipedia:differentially methylated region|differentially methylated region]] (DMR)を含む事が多い<ref><pubmed> 12869525 </pubmed></ref>。ゲノム上の[[wikipedia:ja:反復配列|反復配列]]や[[wikipedia:ja:転移因子|転移因子]]([[wikipedia:ja:トランスポゾン|トランスポゾン]])様配列は一般的にメチル化され転写が抑制された状態にある。これは、染色体の安定化に寄与していると考えられている<ref name="ref5" />。また、[[wikipedia:ja:哺乳類|哺乳類]]における[[wikipedia:ja:遺伝子量補正|遺伝子量補正]](gene dosage compensation)の機構として、[[wikipedia:ja:女性|女性]]の2本ある[[wikipedia:ja:X染色体|X染色体]]のうちの1本は転写が不活性化([[wikipedia:X chromosome inactivation|X chromosome inactivation]])され高メチル化された状態にある<ref><pubmed> 22619385 </pubmed></ref>。不活性化されたX染色体は[[wikipedia:ja:バー小体|バー小体]](Barr body)という特徴的な構造を示す。


39行目: 39行目:
 BSを基本とする方法では、[[wikipedia:ja:重亜硫酸ナトリウム|重亜硫酸ナトリウム]] ([[wikipedia:sodium bisulfite|sodium bisulfite]]; NaHSO<sub>3</sub>)処理により、ゲノム中のメチル化されていないCを[[wikipedia:ja:ウラシル|ウラシル]](U)に変換する。ウラシルはPCRなど酵素反応では[[wikipedia:ja:チミン|チミン]](T)として認識されるため、その後の分子生物学解析でC/T多型として処理することができる。古典的にはBS処理後、標的領域を[[wikipedia:ja:PCR|PCR]]増幅、[[wikipedia:ja:大腸菌|大腸菌]]を形質転換し、多数の単一コロニーのシークエンスを行うことにより定性的・定量的なメチル化状態の解析が行われてきた。多検体処理には、PCR増幅後[[wikipedia:Qiagen|Qiagen]]社の[[wikipedia:Pyrosequencing|Pyrosequencer]]や[[wikipedia:Sequenom|Sequenom]]社の[[wikipedia:Sequenom#MassARRAY_Analyzer_4|MassArray]]など専用の機器を用いた解析が行われている。網羅的解析として、[[アレイ技術]]を利用した方法や、[[wikipedia:ja:次世代シークエンサー|次世代シークエンサー]]を用いた解析が行われている。前者では[[wikipedia:Illumina (company)|Illumina]]社の[[wikipedia:Illumina_(company)#Infinium_methylation|Infinium assay]]が広く用いられている。後者では[[wikipedia:ja:制限酵素|制限酵素]]処理により解析部位を限定した[[wikipedia:Reduced representation bisulfite sequencing|Reduced representation bisulfite sequencing]] (RRBS)法や、全ゲノム解析を行う[[wikipedia:Applications: genome-wide methylation analysis|whole genome bisulfite sequencing]] (WGBS)が行われている。
 BSを基本とする方法では、[[wikipedia:ja:重亜硫酸ナトリウム|重亜硫酸ナトリウム]] ([[wikipedia:sodium bisulfite|sodium bisulfite]]; NaHSO<sub>3</sub>)処理により、ゲノム中のメチル化されていないCを[[wikipedia:ja:ウラシル|ウラシル]](U)に変換する。ウラシルはPCRなど酵素反応では[[wikipedia:ja:チミン|チミン]](T)として認識されるため、その後の分子生物学解析でC/T多型として処理することができる。古典的にはBS処理後、標的領域を[[wikipedia:ja:PCR|PCR]]増幅、[[wikipedia:ja:大腸菌|大腸菌]]を形質転換し、多数の単一コロニーのシークエンスを行うことにより定性的・定量的なメチル化状態の解析が行われてきた。多検体処理には、PCR増幅後[[wikipedia:Qiagen|Qiagen]]社の[[wikipedia:Pyrosequencing|Pyrosequencer]]や[[wikipedia:Sequenom|Sequenom]]社の[[wikipedia:Sequenom#MassARRAY_Analyzer_4|MassArray]]など専用の機器を用いた解析が行われている。網羅的解析として、[[アレイ技術]]を利用した方法や、[[wikipedia:ja:次世代シークエンサー|次世代シークエンサー]]を用いた解析が行われている。前者では[[wikipedia:Illumina (company)|Illumina]]社の[[wikipedia:Illumina_(company)#Infinium_methylation|Infinium assay]]が広く用いられている。後者では[[wikipedia:ja:制限酵素|制限酵素]]処理により解析部位を限定した[[wikipedia:Reduced representation bisulfite sequencing|Reduced representation bisulfite sequencing]] (RRBS)法や、全ゲノム解析を行う[[wikipedia:Applications: genome-wide methylation analysis|whole genome bisulfite sequencing]] (WGBS)が行われている。


 BSを用いない方法として、メチル化感受性・非感受性制限酵素を利用した方法や、[[wikipedia:ja:抗メチル化シトシン抗体|抗メチル化シトシン抗体]]やメチル化DNA結合ドメイン(methylated DNA binding domain: MBD)などを用いメチル化DNA断片を濃縮する方法がある。抗メチル化シトシン抗体を用いた解析は、[[wikipedia:ja:メチル化DNA免疫沈降法|メチル化DNA免疫沈降法]] ([[wikipedia:methylated DNA immunoprecipitation|methylated DNA immunoprecipitation]]; MeDIP)と呼ばれる。メチル化DNA断片の濃縮後、[[wikipedia:タイリングアレイ|タイリングアレイ]]や次世代シークエンサーを用いた解析が広く行われている。
 BSを用いない方法として、メチル化感受性・非感受性制限酵素を利用した方法や、[[wikipedia:ja:抗メチル化シトシン抗体|抗メチル化シトシン抗体]]やメチル化DNA結合ドメインなどを用いメチル化DNA断片を濃縮する方法がある。抗メチル化シトシン抗体を用いた解析は、[[wikipedia:ja:メチル化DNA免疫沈降法|メチル化DNA免疫沈降法]] ([[wikipedia:methylated DNA immunoprecipitation|methylated DNA immunoprecipitation]]; MeDIP)と呼ばれる。メチル化DNA断片の濃縮後、[[wikipedia:タイリングアレイ|タイリングアレイ]]や次世代シークエンサーを用いた解析が広く行われている。


==ヒストン修飾==
==ヒストン修飾==
30

回編集