9,444
回編集
細編集の要約なし |
細編集の要約なし |
||
34行目: | 34行目: | ||
====身体部位中心座標系==== | ====身体部位中心座標系==== | ||
身体の部位を中心とした座標系 主に[[体性感覚]]や視覚を統合した多種感覚ニューロンによって表現される。身体部位が動いても[[受容野]]はその部位と共に動く。VIP<ref name=ref9><pubmed>9425183</pubmed></ref>、腹側運動前野F4<ref name=ref10><pubmed>2758288</pubmed></ref> <ref name=ref11><pubmed></pubmed></ref>や被殻などに体性感覚と視覚の両方に反応し、それぞれの受容野の位置が体のある部分に一致して存在するニューロン活動があることがわかっている。視覚の反応は、自己の身体の周辺の空間に限られ、身体周辺空間(ペリパーソナルスペース)と呼ばれる自己の身体の一体となった空間表現の神経基盤となっている。また、こうした身体周辺空間に関わるニューロンの視覚受容野が、道具を使った時に道具先端にまで拡大する現象が知られている<ref name=ref12><pubmed></pubmed></ref>。これは。道具の使用による身体イメージの拡張に関わると考えられている。 | 身体の部位を中心とした座標系 主に[[体性感覚]]や視覚を統合した多種感覚ニューロンによって表現される。身体部位が動いても[[受容野]]はその部位と共に動く。VIP<ref name=ref9><pubmed>9425183</pubmed></ref>、腹側運動前野F4<ref name=ref10><pubmed>2758288</pubmed></ref> <ref name=ref11><pubmed>16277998</pubmed></ref>や被殻などに体性感覚と視覚の両方に反応し、それぞれの受容野の位置が体のある部分に一致して存在するニューロン活動があることがわかっている。視覚の反応は、自己の身体の周辺の空間に限られ、身体周辺空間(ペリパーソナルスペース)と呼ばれる自己の身体の一体となった空間表現の神経基盤となっている。また、こうした身体周辺空間に関わるニューロンの視覚受容野が、道具を使った時に道具先端にまで拡大する現象が知られている<ref name=ref12><pubmed>8951846</pubmed></ref>。これは。道具の使用による身体イメージの拡張に関わると考えられている。 | ||
====物体中心座標系==== | ====物体中心座標系==== | ||
物体の中での目標の相対的位置。目標とするものの物体の中での位置(前後左右上下)を表現するニューロン活動も[[頭頂葉]]において知られている<ref name=ref13><pubmed></pubmed></ref> <ref name=ref14>< | 物体の中での目標の相対的位置。目標とするものの物体の中での位置(前後左右上下)を表現するニューロン活動も[[頭頂葉]]において知られている<ref name=ref13><pubmed>17389630</pubmed></ref> <ref name=ref14>'''WinNyiShein, et al.,'''<br>サル頭頂葉の手操作目標の相対的位置の選択性<br>''日大医誌''、1999. 58: p. 558-569.</ref> <ref name=ref15><pubmed>9732870</pubmed></ref>。 | ||
====環境中心座標系==== | ====環境中心座標系==== | ||
43行目: | 43行目: | ||
===奥行知覚・立体視=== | ===奥行知覚・立体視=== | ||
立体的に視空間を知覚するためには、両眼視の手がかり(両眼視差、輻輳角)とともに単眼視の手がかり(線遠近、肌理の勾配、調節反射、キアロスクーロ、重なり、相対的大きさ、空気遠近法など)をもとに、網膜上に移った視覚像を3次元的に再現する。単眼視の手がかりは調節反射以外のものは、絵画的手がかりと呼ばれる。こうした[[立体視]]には、脳内のいくつかの領域が関わっており、例えば両眼視差に対してはV1、V2、V3、V3AMT MST等の[[視覚前野]]や頭頂連合野にあるCIP、AIPなどの背側経路にある領域にあることが知られている<ref name=ref16><pubmed></pubmed></ref> <ref name=ref17><pubmed></pubmed></ref>。また、腹側経路にも両眼視差に反応するニューロン活動が知られている<ref name=ref18><pubmed></pubmed></ref>。 | 立体的に視空間を知覚するためには、両眼視の手がかり(両眼視差、輻輳角)とともに単眼視の手がかり(線遠近、肌理の勾配、調節反射、キアロスクーロ、重なり、相対的大きさ、空気遠近法など)をもとに、網膜上に移った視覚像を3次元的に再現する。単眼視の手がかりは調節反射以外のものは、絵画的手がかりと呼ばれる。こうした[[立体視]]には、脳内のいくつかの領域が関わっており、例えば両眼視差に対してはV1、V2、V3、V3AMT MST等の[[視覚前野]]や頭頂連合野にあるCIP、AIPなどの背側経路にある領域にあることが知られている<ref name=ref16><pubmed>15710485</pubmed></ref> <ref name=ref17><pubmed>15707901</pubmed></ref>。また、腹側経路にも両眼視差に反応するニューロン活動が知られている<ref name=ref18><pubmed>10899190</pubmed></ref>。 | ||
===注視ニューロン=== | ===注視ニューロン=== | ||
物体を定位する場合に、目で注視したときの眼球の位置を元にすることができる。眼球で物体を注視し、ある位置で固定されているときに活動するニューロンを注視ニューロンと呼ぶ。注視ニューロンの位置選択性は、前額平面だけではなく、輻輳反射による奥行き位置にも選択性を持つ。下頭頂葉の頭頂間溝の中あるいは7a野<ref name=ref19><pubmed></pubmed></ref>や、前頭眼野(FEF)<ref name=ref20><pubmed></pubmed></ref>上丘で記録される。 | 物体を定位する場合に、目で注視したときの眼球の位置を元にすることができる。眼球で物体を注視し、ある位置で固定されているときに活動するニューロンを注視ニューロンと呼ぶ。注視ニューロンの位置選択性は、前額平面だけではなく、輻輳反射による奥行き位置にも選択性を持つ。下頭頂葉の頭頂間溝の中あるいは7a野<ref name=ref19><pubmed>7411181</pubmed></ref>や、前頭眼野(FEF)<ref name=ref20><pubmed>19675294</pubmed></ref>上丘で記録される。 | ||
===傾きの選択性=== | ===傾きの選択性=== | ||
視覚刺激の軸方向の傾きに関して、選択性のあるニューロンが視覚皮質や頭頂連合野で知られている。V1では、スリット状の視覚刺激の傾きに選択性を持つニューロンが、コラムを形成して整然と並んでいる.また、頭頂間溝の後方のCIPやその周辺では、細長い物体の奥行き方向に選択性を持つニューロンが知られている<ref name=ref17 />。また、同じ領域では、面の奥行きのある傾きに選択性を持つニューロンも記録される<ref name=ref17 />。さらに、AIPでは面や軸を持った物体の傾きに選択性を示す視覚ニューロンが記録される<ref name=ref21><pubmed></pubmed></ref>。 | 視覚刺激の軸方向の傾きに関して、選択性のあるニューロンが視覚皮質や頭頂連合野で知られている。V1では、スリット状の視覚刺激の傾きに選択性を持つニューロンが、コラムを形成して整然と並んでいる.また、頭頂間溝の後方のCIPやその周辺では、細長い物体の奥行き方向に選択性を持つニューロンが知られている<ref name=ref17 />。また、同じ領域では、面の奥行きのある傾きに選択性を持つニューロンも記録される<ref name=ref17 />。さらに、AIPでは面や軸を持った物体の傾きに選択性を示す視覚ニューロンが記録される<ref name=ref21><pubmed>10805659</pubmed></ref>。 | ||
===運動視=== | ===運動視=== | ||
物体の動きをとらえる運動視も、空間知覚の重要な要素である。運動視は、外界の物体そのもの動きと観察者自身の動きによってもたらされる網膜の上の動きがもとになる。水平面の動きとともに、3次元空間内での動き(前後、回転、並行運動)などがある。 | 物体の動きをとらえる運動視も、空間知覚の重要な要素である。運動視は、外界の物体そのもの動きと観察者自身の動きによってもたらされる網膜の上の動きがもとになる。水平面の動きとともに、3次元空間内での動き(前後、回転、並行運動)などがある。 | ||
運動視に関する心理物理的手がかりとして、静止した視覚刺激を場所と時間をずらして提示する時に起こる仮現運動、背景の動きによって物体が動いて見える誘導運動がある。また、奥行きの動きには、両眼視差の変化と大きさの変化が手がかりとなる。網膜上での視覚像の流れは、オプティックフロー(optic flow)と呼ばれるが、オプティックフローが視野内で大きな範囲を占め、ある一定の法則を満たしていると、観察者自身の動きとして感じるが、これも誘導運動の一つである。また、対象の動きや観察者の動きによって物体の3次元的構造(structure form motion)や前後の遠近の知覚(運動視差)をすることもできる。こうした運動視には、MT/MSTと呼ばれる上側頭溝内に存在する領域が関わっていて<ref name=ref22><pubmed></pubmed></ref>、動きの方向と速度に関する選択性あるいは、誘導運動、視差などに選択性を持つニューロン活動が知られている。また、奥行きの運動には、下頭頂葉やVIP 腹側運動前野などでも記録されている<ref name=ref23><pubmed></pubmed></ref> <ref name=ref24><pubmed></pubmed></ref>。 | 運動視に関する心理物理的手がかりとして、静止した視覚刺激を場所と時間をずらして提示する時に起こる仮現運動、背景の動きによって物体が動いて見える誘導運動がある。また、奥行きの動きには、両眼視差の変化と大きさの変化が手がかりとなる。網膜上での視覚像の流れは、オプティックフロー(optic flow)と呼ばれるが、オプティックフローが視野内で大きな範囲を占め、ある一定の法則を満たしていると、観察者自身の動きとして感じるが、これも誘導運動の一つである。また、対象の動きや観察者の動きによって物体の3次元的構造(structure form motion)や前後の遠近の知覚(運動視差)をすることもできる。こうした運動視には、MT/MSTと呼ばれる上側頭溝内に存在する領域が関わっていて<ref name=ref22><pubmed>6864242</pubmed></ref>、動きの方向と速度に関する選択性あるいは、誘導運動、視差などに選択性を持つニューロン活動が知られている。また、奥行きの運動には、下頭頂葉やVIP 腹側運動前野などでも記録されている<ref name=ref23><pubmed>9246729</pubmed></ref> <ref name=ref24><pubmed>8836215</pubmed></ref>。 | ||
一方で、動くことによる感覚情報の変化に対して、より安定した外部空間を脳内に表現するために、脳は自らの運動の指令のコピー([[遠心性コピー]]・随伴発射)を使って、感覚情報に調整を加える<ref name=ref1 />。例えば、眼球がサッケードをおこしたときには、網膜上の像は大きく揺れることになるが、脳内ではその視覚入に対し眼球運動のための運動司令を使って、視覚入力に影響を及ぼす。 | 一方で、動くことによる感覚情報の変化に対して、より安定した外部空間を脳内に表現するために、脳は自らの運動の指令のコピー([[遠心性コピー]]・随伴発射)を使って、感覚情報に調整を加える<ref name=ref1 />。例えば、眼球がサッケードをおこしたときには、網膜上の像は大きく揺れることになるが、脳内ではその視覚入に対し眼球運動のための運動司令を使って、視覚入力に影響を及ぼす。 | ||
===視覚以外の感覚による空間知覚=== | ===視覚以外の感覚による空間知覚=== | ||
自己の姿勢の変化を知ると共に、姿勢の変化にもかかわらず頭頂葉では前庭入力も重要である。サルでは、[[前庭神経]]からの情報は、脳幹、小脳のみならず[[大脳皮質]]でも処理される。頭頂葉の2V(頭頂間溝の最も吻側部分)、MST、VIP等が知られている。また、そのほかにもPIVC(periotoinsular vestibular cortex)、3a、弓状溝周辺などにも認められる<ref name=ref25><pubmed></pubmed></ref>。また、聴覚の入力も空間知覚には重要である。音源の定位に、聴覚皮質のニューロン活動が関わっていることが知られている<ref name=ref26><pubmed></pubmed></ref>。また、自己の身体の周囲の視覚刺激に反応する頭頂葉のVIPや腹側運動前野にも、聴覚刺激に反応するニューロン活動が知られている。近年、興味深いことに、聴覚皮質からの経路は、視覚とよく似て頭頂葉を経由して背外側[[前頭前野]]に投射する経路と、頭頂葉は経由せずにそのまま吻側に向かい腹外側前頭前野に投射する経路の二つがあり、それぞれ空間知覚と音の持つ意味の処理をしていると考えられている<ref name=ref26 />。 | 自己の姿勢の変化を知ると共に、姿勢の変化にもかかわらず頭頂葉では前庭入力も重要である。サルでは、[[前庭神経]]からの情報は、脳幹、小脳のみならず[[大脳皮質]]でも処理される。頭頂葉の2V(頭頂間溝の最も吻側部分)、MST、VIP等が知られている。また、そのほかにもPIVC(periotoinsular vestibular cortex)、3a、弓状溝周辺などにも認められる<ref name=ref25><pubmed>15826966</pubmed></ref>。また、聴覚の入力も空間知覚には重要である。音源の定位に、聴覚皮質のニューロン活動が関わっていることが知られている<ref name=ref26><pubmed>19471271</pubmed></ref>。また、自己の身体の周囲の視覚刺激に反応する頭頂葉のVIPや腹側運動前野にも、聴覚刺激に反応するニューロン活動が知られている。近年、興味深いことに、聴覚皮質からの経路は、視覚とよく似て頭頂葉を経由して背外側[[前頭前野]]に投射する経路と、頭頂葉は経由せずにそのまま吻側に向かい腹外側前頭前野に投射する経路の二つがあり、それぞれ空間知覚と音の持つ意味の処理をしていると考えられている<ref name=ref26 />。 | ||
===第3の視覚経路=== | ===第3の視覚経路=== | ||
近年、頭頂葉から、内側側頭皮質に向かう経路をもう一つの空間情報処理の経路とする考え方が出てきている。この経路は後頭頂葉から直接あるいは、内側頭頂葉、後部帯状回皮質や脳梁[[膨大部]]後部領域を経由して、[[海馬]]や海馬傍回などの内側側頭葉に投射している<ref name=ref27><pubmed></pubmed></ref>。 | 近年、頭頂葉から、内側側頭皮質に向かう経路をもう一つの空間情報処理の経路とする考え方が出てきている。この経路は後頭頂葉から直接あるいは、内側頭頂葉、後部帯状回皮質や脳梁[[膨大部]]後部領域を経由して、[[海馬]]や海馬傍回などの内側側頭葉に投射している<ref name=ref27><pubmed>19620622</pubmed></ref>。 | ||
ヒトでのこの経路の損傷はヒトでは、地誌的見当識の障害となって現れる。また、サルでは、内側頭頂葉、後部帯状回皮質や脳梁膨大部後部領域ではオプティックフローや環境内の場所に選択的に反応するニューロンや、環境中心座標系の表現が知られている<ref name=ref5 /> <ref name=ref27 />。また、サルでもラット内側側頭葉においても[[場所細胞]](place cell)という環境のある場所で反応するニューロン活動が知られている。以上のことから、この経路は環境の中を移動するときに必要なナビゲーションの機能を持っていると考えられている<ref name=ref5 />。 | ヒトでのこの経路の損傷はヒトでは、地誌的見当識の障害となって現れる。また、サルでは、内側頭頂葉、後部帯状回皮質や脳梁膨大部後部領域ではオプティックフローや環境内の場所に選択的に反応するニューロンや、環境中心座標系の表現が知られている<ref name=ref5 /> <ref name=ref27 />。また、サルでもラット内側側頭葉においても[[場所細胞]](place cell)という環境のある場所で反応するニューロン活動が知られている。以上のことから、この経路は環境の中を移動するときに必要なナビゲーションの機能を持っていると考えられている<ref name=ref5 />。 | ||
79行目: | 79行目: | ||
===地誌的見当識=== | ===地誌的見当識=== | ||
よく知っているはずの場所で道に迷うなどの症状で、街並失認と道順障害が知られている<ref name=ref28>< | よく知っているはずの場所で道に迷うなどの症状で、街並失認と道順障害が知られている<ref name=ref28>'''河村 満'''<br>空間識・シリーズ教育講座 地理認知障害 街並失認と道順障害<br>''Equilibrium Research'', 2003. 62(4): p. 275-283.</ref>。街並失認は、旧知の家や街の風景の同定が出来なくなり、右の海馬傍回が責任病巣されている。また、道順障害は、風景は街並を見てどこにいるかはわかるが、道順が[[想起]]できない。右の脳梁膨大部の後ろの方の障害によって起こる。 | ||
===到達運動障害=== | ===到達運動障害=== | ||
到達運動に関しては、物体の空間的定位情報が正しく運動系へ伝えられる必要がある。Balint 症候群に含まれる視覚失調(optiche Ataxie)は、注視線上にとらえた物体に手をのばすことができない。両側の頭頂連合野病変によるものと考えられている。一方、周辺視野にある物体に到達運動ができないものを視覚性運動失調(ataxie optique)とよび、眼球位置や頭の位置、腕の位置などの網膜外の情報による座標変換の障害と考えられている<ref name=ref29>< | 到達運動に関しては、物体の空間的定位情報が正しく運動系へ伝えられる必要がある。Balint 症候群に含まれる視覚失調(optiche Ataxie)は、注視線上にとらえた物体に手をのばすことができない。両側の頭頂連合野病変によるものと考えられている。一方、周辺視野にある物体に到達運動ができないものを視覚性運動失調(ataxie optique)とよび、眼球位置や頭の位置、腕の位置などの網膜外の情報による座標変換の障害と考えられている<ref name=ref29>'''山鳥 重'''<br>神経心理学入門、1985: ''医学書院''</ref>。 | ||
===手操作運動障害=== | ===手操作運動障害=== | ||
両側の上頭頂小葉の障害あるいは、サルのAIP に相当するhAIPと呼ばれるヒトの下頭頂小葉の損傷で把持運動障害が知られている<ref name=ref30><pubmed></pubmed></ref>。 | 両側の上頭頂小葉の障害あるいは、サルのAIP に相当するhAIPと呼ばれるヒトの下頭頂小葉の損傷で把持運動障害が知られている<ref name=ref30><pubmed> 18219055</pubmed></ref>。 | ||
==参考文献== | ==参考文献== | ||
<references /> | <references /> |