「パッチクランプ法」の版間の差分

編集の要約なし
編集の要約なし
9行目: 9行目:


==パッチクランプ法とは==
==パッチクランプ法とは==
 パッチクランプ法は[[電位固定法]]を基に、[[wikipedia:Erwin Neher|Erwin Neher]]と[[wikipedia:Bert Sakmann|Bert Sakmann]]によって開発された電気生理学的記録方法である<ref name=ref1><pubmed>1083489</pubmed></ref>。
 パッチクランプ法は[[電位固定法]]を基に、[[wikipedia:Erwin Neher|Erwin Neher]]と[[wikipedia:Bert Sakmann|Bert Sakmann]]によって開発された電気生理学的記録方法である<ref name=ref1><pubmed>1083489</pubmed></ref><ref name=okada>'''岡田泰伸'''<br>   新パッチクランプ実験技術法<br>   ''吉岡書店'' (2001) ISBN 4-8427-0296-6</ref><ref name=mikoshiba>''Tritsch D. Chesnoy-Marchais D. Feltz A.'''(translation supervised by Mikoshiba K.)<br>   ニューロンの生理学<br>   ''京都大学学術出版会'' ISBN 978-4-87698-773-3</ref>。


 パッチクランプ法が開発される以前は、パッチクランプ法で使用される電極よりも先端が細い電極([[微小電極]]、Sharp glass electrode)を細胞内に刺入して電流を記録する[[細胞内記録法]]が用いられていた。この方法では、電極刺入口において絶縁性が得られ、正確な[[膜電位]]測定が可能であったが、電極と細胞膜間のシール抵抗が細胞膜の抵抗([[入力抵抗]])よりも十分に大きくないと正確な測定は行えず、小さな細胞には不向きであった。
 パッチクランプ法が開発される以前は、パッチクランプ法で使用される電極よりも先端が細い電極([[微小電極]]、Sharp glass electrode)を細胞内に刺入して電流を記録する[[細胞内記録法]]が用いられていた。この方法では、電極刺入口において絶縁性が得られ、正確な[[膜電位]]測定が可能であったが、電極と細胞膜間のシール抵抗が細胞膜の抵抗([[入力抵抗]])よりも十分に大きくないと正確な測定は行えず、小さな細胞には不向きであった。
41行目: 41行目:
 先端が開口しているガラス電極に実験目的に応じて選択された電極内液を満たす。電極内液を満たす際は、フィルターを介して行い、電極内部へのゴミの侵入を防ぐ。また、電極内部に気泡が入った場合は電極を軽く叩いて、気泡を取り除く。[[wikipedia:ja:塩化銀|塩化銀]]の金属線が付いた電極ホルダーへ電極を装着する。電極内液と接触している塩化銀の金属線により、プレアンプへ電流・電圧が伝えられる。電極内部へ繋がっているチューブを介し陽圧をかけることで、電極先端へのゴミや組織の付着を防ぎ、ギガシールを形成し易くする。
 先端が開口しているガラス電極に実験目的に応じて選択された電極内液を満たす。電極内液を満たす際は、フィルターを介して行い、電極内部へのゴミの侵入を防ぐ。また、電極内部に気泡が入った場合は電極を軽く叩いて、気泡を取り除く。[[wikipedia:ja:塩化銀|塩化銀]]の金属線が付いた電極ホルダーへ電極を装着する。電極内液と接触している塩化銀の金属線により、プレアンプへ電流・電圧が伝えられる。電極内部へ繋がっているチューブを介し陽圧をかけることで、電極先端へのゴミや組織の付着を防ぎ、ギガシールを形成し易くする。


 矩形波電位パルス(通常数mV)を繰り返し与え、矩形波電流をオシロスコープ上でモニターする事で電極先端の抵抗を測定し、その状態を把握しつつ実験を進めていく。(図1A)。
 矩形波電位パルス(通常数mV)を繰り返し与え、矩形波電流をオシロスコープ上でモニターする事で電極先端の抵抗を測定し、その状態を把握しつつ実験を進めていく(図1A)<ref name=okada />。


;'''細胞へのアプローチと接触'''
;'''細胞へのアプローチと接触'''
59行目: 59行目:
[[image:パッチクランプ.jpg|thumb|350px|'''図2.パッチクランプ法の様々な方法'''<br>研究目的によって以下のパッチクランプ法が使い分けられる(図2)。セルアタッチ法とインサイド−アウト法、アウトサイド−アウト法は、電極で取り囲んだ領域のイオンチャネルの挙動を記録するために用いられる(単一チャネル記録法)。ホールセル法とパーフォレイテッド法は単一チャネル電流ではなく、細胞膜全体の電気現象を記録することができる(全細胞電流記録法)。]]
[[image:パッチクランプ.jpg|thumb|350px|'''図2.パッチクランプ法の様々な方法'''<br>研究目的によって以下のパッチクランプ法が使い分けられる(図2)。セルアタッチ法とインサイド−アウト法、アウトサイド−アウト法は、電極で取り囲んだ領域のイオンチャネルの挙動を記録するために用いられる(単一チャネル記録法)。ホールセル法とパーフォレイテッド法は単一チャネル電流ではなく、細胞膜全体の電気現象を記録することができる(全細胞電流記録法)。]]


 研究目的によって以下のパッチクランプ法が使い分けられる(図2)。[[セルアタッチ法]]と[[インサイド-アウト法]]、[[アウトサイド-アウト法]]は、電極で取り囲んだ領域のイオンチャネルの挙動を記録するために用いられる([[単一チャネル記録法]])。[[ホールセル法]]と[[パーフォレイテッド法]]は単一チャネル電流ではなく、細胞膜全体の電気現象を記録することができる([[全細胞電流記録法]])。
 研究目的によって以下のパッチクランプ法が使い分けられる(図2)<ref name=okada />。[[セルアタッチ法]]と[[インサイド-アウト法]]、[[アウトサイド-アウト法]]は、電極で取り囲んだ領域のイオンチャネルの挙動を記録するために用いられる([[単一チャネル記録法]])。[[ホールセル法]]と[[パーフォレイテッド法]]は単一チャネル電流ではなく、細胞膜全体の電気現象を記録することができる([[全細胞電流記録法]])。


=== セルアタッチ法 ===
=== セルアタッチ法 ===
80行目: 80行目:
=== パーフォレイテッド法===
=== パーフォレイテッド法===


 穿孔パッチ法ともいう(図2E)。ホールセル法の代替法であり、HornとMartyによって開発された<ref name=ref2><pubmed>2459299</pubmed></ref>。ギガシールを形成後、陰圧によって膜を破るのではなく、パッチ電極内液に含まれた[[wikipedia:ja:ナイスタチン|ナイスタチン]]、[[wikipedia:ja:アンホテリシンB|アンホテリシンB]]や[[wikipedia:ja:グラミシジン|グラミシジン]]のような[[wikipedia:ja:抗生物質|抗生物質]]によって細胞膜に小さな穴をあける方法である。これらの抗生物質が、ほとんどの細胞膜に一価イオン(編集コメント:イオンの選択性はどうでしょうか。陽イオン電流、陰イオン電流同程度測れるのでしょうか)や10Å以下の径を持つ分子を通過させる孔をあけることを利用している。そのため、膜を破らずに全細胞膜での電流を記録することができる。また、細胞の内容成分の漏出を軽減し、細胞内環境を保持することが可能となる。しかし、いくつかの欠点がある。まず、ホールセル法と比較して、シリーズ抵抗が高くなり、電気的解像能が低下する。また、抗生物質による細胞膜の穿孔には時間がかかる(10-30分間)。さらに、抗生物質により形成された孔によって電極先端の膜は弱くなっているため、その膜が破れて、ホールセル法に移行する危険性がある。ニスタチン、アンホテリシンBは一価の陽イオン(Na<sup>+</sup>、K<sup>+</sup>、Cs<sup>+</sup>、Li<sup>+</sup>など)に加え、一価の陰イオン(Cl-)に対して透過性を有しているが、グラミシジンは陰イオンに対する透過性が無く、グラミシジンによるパーフォレイテッドパッチは細胞内のCl-濃度を保持したまま記録することが可能である。ホールセル法では電極内液のCl-により、細胞内Cl-濃度が上昇するため、ホールセル法とグラミシジンによるパーフォレイテッドパッチ法では、固定電位によってCl-チャネルを介した電流応答の向きが異なる。
 穿孔パッチ法ともいう(図2E)。ホールセル法の代替法であり、HornとMartyによって開発された<ref name=ref2><pubmed>2459299</pubmed></ref>。ギガシールを形成後、陰圧によって膜を破るのではなく、パッチ電極内液に含まれた[[wikipedia:ja:ニスタチン|ニスタチン]]、[[wikipedia:ja:アンホテリシンB|アンホテリシンB]]や[[wikipedia:ja:グラミシジン|グラミシジン]]のような[[wikipedia:ja:抗生物質|抗生物質]]によって細胞膜に小さな穴をあける方法である。これらの抗生物質が、ほとんどの細胞膜に一価イオンや10Å以下の径を持つ分子を通過させる孔をあけることを利用している。そのため、膜を破らずに全細胞膜での電流を記録することができる。また、細胞の内容成分の漏出を軽減し、細胞内環境を保持することが可能となる。
 
 ニスタチン、アンホテリシンBは一価の陽イオン(Na<sup>+</sup>、K<sup>+</sup>、Cs<sup>+</sup>、Li<sup>+</sup>など)に加え、一価の陰イオン(Cl<sup>-</sup>)に対して透過性を有しているが、グラミシジンは陰イオンに対する透過性が無く、グラミシジンによるパーフォレイテッドパッチは細胞内のCl<sup>-</sup>濃度を保持したまま記録することが可能である。ホールセル法では電極内液のCl<sup>-</sup>により、細胞内Cl<sup>-</sup>濃度が上昇するため、ホールセル法とグラミシジンによるパーフォレイテッドパッチ法では、固定電位によってCl<sup>-</sup>チャネルを介した電流応答の向きが異なる。
 
 しかし、いくつかの欠点がある。まず、ホールセル法と比較して、Rsが高くなり、電気的解像能が低下する。また、抗生物質による細胞膜の穿孔には時間がかかる(10-30分間)。さらに、抗生物質により形成された孔によって電極先端の膜は弱くなっているため、その膜が破れて、ホールセル法に移行する危険性がある。


=== ルーズパッチ法 ===
=== ルーズパッチ法 ===
107行目: 111行目:
== 参考文献 ==
== 参考文献 ==
<references />
<references />
  7.'''岡田泰伸'''<br>   新パッチクランプ実験技術法<br>   ''吉岡書店'' (2001) ISBN 4-8427-0296-6
  8.'''Tritsch D. Chesnoy-Marchais D. Feltz A.'''(translation supervised by Mikoshiba K.)<br>   ニューロンの生理学<br>   ''京都大学学術出版会'' ISBN 978-4-87698-773-3