21
回編集
細編集の要約なし |
Manamiyamashita (トーク | 投稿記録) 細編集の要約なし |
||
7行目: | 7行目: | ||
== 構造== | == 構造== | ||
神経細胞はシナプスという構造を介して情報の伝達を行っている<ref>'''D Purves, GJ Augustine, D Fitzpatrick, WC Hall, AS LaMantia, JO McNamara, and LE White'''<br>Neuroscience, Fourth Edition<br>''Sinauer'':2011<br></ref>。神経細胞は情報を受容する細胞体と[[樹状突起]]、情報を出力する軸索から成る。軸索のシナプス結合部はやや膨大しており、シナプス前終末(presynaptic terminal)と呼ばれる。[[グルタミン酸]]を神経伝達物質とする[[興奮性シナプス]]では、シナプス前終末からシナプス後細胞の樹状突起上の[[スパイン]]へ情報が伝えられる(図1)。一方、[[GABA]]を伝達物質とする[[抑制性シナプス]]前終末は、樹状突起の幹および細胞体に接合する。シナプス前細胞と後細胞の間にはシナプス間隙(20 | 神経細胞はシナプスという構造を介して情報の伝達を行っている<ref>'''D Purves, GJ Augustine, D Fitzpatrick, WC Hall, AS LaMantia, JO McNamara, and LE White'''<br>Neuroscience, Fourth Edition<br>''Sinauer'':2011<br></ref>。神経細胞は情報を受容する細胞体と[[樹状突起]]、情報を出力する軸索から成る。軸索のシナプス結合部はやや膨大しており、シナプス前終末(presynaptic terminal)と呼ばれる。[[グルタミン酸]]を神経伝達物質とする[[興奮性シナプス]]では、シナプス前終末からシナプス後細胞の樹状突起上の[[スパイン]]へ情報が伝えられる(図1)。一方、[[GABA]]を伝達物質とする[[抑制性シナプス]]前終末は、樹状突起の幹および細胞体に接合する。シナプス前細胞と後細胞の間にはシナプス間隙(20 nm)があり、情報伝達の場を形成している。シナプス前終末の中には数百のシナプス小胞(50 nm)が存在する。シナプス小胞がシナプス前終末の[[細胞膜]]と融合し、その中の神経伝達物質を[[開口放出]]([[エクソサイトーシス]];exocytosis)する領域は[[アクティブゾーン]]と呼ばれる。中枢シナプスにおけるアクティブゾーンは0.03-0.14 μm<sup>2</sup>の広さで<ref><pubmed>12486149</pubmed></ref><ref><pubmed>10097171</pubmed></ref>、膜が肥厚しており、5-10個のシナプス小胞が結合している(図2)。 | ||
[[ファイル:Spine EM.png|thumb|300px|right|'''図2 シナプスの電子顕微鏡像'''<br>AT: | [[ファイル:Spine EM.png|thumb|300px|right|'''図2 シナプスの電子顕微鏡像'''<br>AT:軸索終末、a:星状膠細胞、矢頭間:PSD、S:樹状突起棘、矢印:小胞体、スケールバー:200 nm。ヒト大脳皮質。[http://synapses.clm.utexas.edu/pubs/pubs.stm Synapseweb]より。許可を得て転載。]] | ||
[[Image:Figure2.jpg|thumb|300px|'''図3 シナプス伝達'''<br>活動電位がシナプス前終末に到達すると、シナプス前終末の膜電位は脱分極し、電位依存性カルシウムチャネルからカルシウムイオンが流入する。それが引き金となり、アクティブゾーン上のシナプス小胞が膜融合して、神経伝達物質がシナプス間隙に開口放出される。放出された神経伝達物質はシナプス後細胞にある受容体に結合する。シナプス間隙に残存した神経伝達物質はトランスポーターによってシナプス前終末に再取り込みされ、シナプス小胞に充填される。]] | [[Image:Figure2.jpg|thumb|300px|'''図3 シナプス伝達'''<br>活動電位がシナプス前終末に到達すると、シナプス前終末の膜電位は脱分極し、電位依存性カルシウムチャネルからカルシウムイオンが流入する。それが引き金となり、アクティブゾーン上のシナプス小胞が膜融合して、神経伝達物質がシナプス間隙に開口放出される。放出された神経伝達物質はシナプス後細胞にある受容体に結合する。シナプス間隙に残存した神経伝達物質はトランスポーターによってシナプス前終末に再取り込みされ、シナプス小胞に充填される。]] | ||
18行目: | 18行目: | ||
===アクティブゾーンへの移動とドッキング=== | ===アクティブゾーンへの移動とドッキング=== | ||
神経伝達物質が詰め込まれた小胞はアクティブゾーンに[[移動]]し、細胞膜に結合した状態になる(docking)。アクティブゾーン特異的蛋白質として、[[RIM1]](Rab3-interacting molecules 1), [[Munc13]]等が知られている。Munc13はシナプス小胞のprimingに関与し、カルシウムイオンとRIM1によって制御を受ける。RIM1は、アクティブゾーンに存在する多くのタンパク質と直接あるいは間接的に結合し、アクティブゾーンの形成や機能において重要な役割を担っている<ref><pubmed> 22026965</pubmed></ref>。次に、結合したシナプス小胞は、[[カルシウム]]依存的に細胞膜と融合できる状態になる(priming)。 | |||
===カルシウム流入と開口放出=== | ===カルシウム流入と開口放出=== | ||
シナプス前細胞の細胞体からシナプス前終末へ[[活動電位]]が到達すると、[[膜電位]]が脱分極して電位依存性カルシウムチャネルが開き、シナプス前終末内へカルシウムイオンが流入し、それが引き金となってシナプス小胞内の神経伝達物質が開口放出される。シナプス前終末には複数種の[[電位依存性カルシウムチャネル]]が集積している。[[P/Q型電位依存性カルシウムチャネル|P/Q]] ([[Cav2.1]])、[[N型電位依存性カルシウムチャネル|N]] ([[Cav2.2]])、[[R型電位依存性カルシウムチャネル|R]] ([[Cav2.3]])タイプのカルシウムチャネルがシナプス伝達に寄与すると考えられている<ref><pubmed>18817729</pubmed></ref>。しかし、シナプスによって各カルシウムチャネルのシナプス伝達への寄与率は異なり、また発生に伴って変化する<ref><pubmed>10627581</pubmed></ref>。シナプス前終末内に流入したカルシウムイオンは、シナプス小胞膜上のカルシウム作動性タンパク質である[[シナプトタグミン]]に結合する。そしてシナプトタグミンの構造変化が、アクティブゾーンに接しているシナプス小胞の[[膜融合]] | シナプス前細胞の細胞体からシナプス前終末へ[[活動電位]]が到達すると、[[膜電位]]が脱分極して電位依存性カルシウムチャネルが開き、シナプス前終末内へカルシウムイオンが流入し、それが引き金となってシナプス小胞内の神経伝達物質が開口放出される。シナプス前終末には複数種の[[電位依存性カルシウムチャネル]]が集積している。[[P/Q型電位依存性カルシウムチャネル|P/Q]] ([[Cav2.1]])、[[N型電位依存性カルシウムチャネル|N]] ([[Cav2.2]])、[[R型電位依存性カルシウムチャネル|R]] ([[Cav2.3]])タイプのカルシウムチャネルがシナプス伝達に寄与すると考えられている<ref><pubmed>18817729</pubmed></ref>。しかし、シナプスによって各カルシウムチャネルのシナプス伝達への寄与率は異なり、また発生に伴って変化する<ref><pubmed>10627581</pubmed></ref>。シナプス前終末内に流入したカルシウムイオンは、シナプス小胞膜上のカルシウム作動性タンパク質である[[シナプトタグミン]]に結合する。そしてシナプトタグミンの構造変化が、アクティブゾーンに接しているシナプス小胞の[[膜融合]]を促し、シナプス小胞内の神経伝達物質がシナプス間隙へ開口放出されると考えられている。膜融合に関して、SNARE仮説が提唱されている。[[N-ethylmaleimide-sensitive fusion protein]] (NSF)と[[soluble NSF attachment protein]] (SNAP)は、[[ゴルジ体]]膜間の[[小胞輸送]]に必須な細胞質タンパク質である。これらのタンパク質は、2つの対峙した生体膜上に存在する受容体であるSNARE(SNAP receptor)タンパク質と相互作用することで、膜の融合を促すと考えられた。SNAREタンパク質は、融合する双方の膜表面に分かれた形で存在し、複合体を形成することによって膜間の距離を縮め、その結果として膜融合が引き起こされるというのがSNARE仮説である。一方を小胞、他方を細胞膜と想定し、それらの膜に存在するSNAREタンパク質は、各々v-SNARE、t-SNAREと名づけられた。シナプス前終末においては、シナプス小胞上の[[シナプトブレビン]](VAMP; vesicle-associated membrane protein)がv-SNAREであり、アクティブゾーン細胞膜にある[[シンタキシン]]と[[SNAP-25]](synaptosomal associated protein-25)がt-SNAREに相当する<ref><pubmed> 11031229 </pubmed></ref>。[[SNARE複合体]]が、シナプスでの開口放出に中心的かつ必須な役割を果たすが、個々のSNAREタンパク質やSNARE複合体に相互作用するさまざまなタンパク質群が、いかに開口放出の時間的空間的制御に関わっているのかはまだよくわからない。前述したシナプス小胞上のシナプトタグミンは、エキソサイトーシスのカルシウムセンサーとしてはたらいて開口放出を制御するが、そのメカニズムは明確ではない<ref><pubmed> 21439657 </pubmed></ref>。 | ||
===シナプス小胞のリサイクリング=== | ===シナプス小胞のリサイクリング=== | ||
神経伝達物質は拡散によりシナプス後部にある[[受容体]]に到達して結合し、情報が伝達される。開口放出により細胞膜へ移行したシナプス小胞膜は、その後[[エンドサイトーシス]]によりシナプス前終末に取り込まれ、シナプス小胞として再利用される。また、シナプス間隙に残存する神経伝達物質は、高親和性の細胞膜トランスポーターによりシナプス前終末へ再取り込みされる。 | |||
== | ===シナプス小胞プール=== | ||
シナプス小胞プールは、その状態に応じて、即時放出可能プール(readily releasable pool, RRP)・再循環プール(recycling pool)・静止プール(resting pool, RP)に分類される。即時放出可能プールと再循環プールを合わせて、全放出可能プールあるいは全リサイクリングプール(total recycling pool, TRP)と呼ばれる。また、再循環プールと静止プールを貯蔵プール(reserve pool)と呼ぶこともある。 | |||
==シナプス小胞放出の調節== | |||
シナプス前終末にある即時放出可能プールのシナプス小胞は、活動電位の発生に応じて、各々が確率的に放出されると考えられる。シナプス小胞の放出確率は、シナプス前終末に存在する種々の受容体によって制御を受ける。たとえば、シナプス後細胞に入力する興奮性シナプス前終末上に抑制性シナプスが作られ、興奮性シナプスからの伝達物質放出を抑制することで、シナプス伝達を調節する[[シナプス前抑制]]が知られている。また、シナプス後細胞から放出される逆行性メッセンジャーによっても、シナプス前終末からの伝達物質放出は制御される<ref><pubmed>19640475</pubmed></ref>。逆行性シナプス伝達制御の1つにDSI ([[Depolarization-induced suppression of inhibition]])がある。DSIは、シナプス後細胞が脱分極することにより、そこから[[エンドカンナビノイド]]が放出され、抑制性シナプス前終末にある[[カンナビノイド受容体]]に作用することで、シナプス前終末からのシナプス小胞の放出確率が低下する現象である。 | |||
==シナプス前終末タンパク質== | |||
アクティブゾーンには上述したタンパク質に加えて、RIM-BP・α-Liprins・Piccolo・Bassoon・ELKS(Rab6-interacting protein, CAST, ERC)・CASK・Mintなどのタンパク質も局在している。また、アクティブゾーン辺縁には細胞接着分子であるニューレキシン・カドヘリン・エフリン・SynCAMなどがあり、それぞれシナプス後部にあるニューロリジン・カドヘリン・エフリン受容体・SynCAM等と結合することにより、シナプス構造の形成および神経伝達物質の放出機能の発現と制御に関与していると考えられる<ref><pubmed>22794257</pubmed></ref>。 | |||
==関連項目== | ==関連項目== |
回編集